
Simulink® Real-Time™
I/O Reference

R2022b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Real-Time™ I/O Reference
© COPYRIGHT 2000–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)
September 2002 Online only Revised for Version 2.0.1 (Release 13)
September 2003 Online only Revised for Version 2.0.1 (Release 13SPI)
June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)
March 2013 Online only Revised for Version 5.4 (Release 2013a)
September 2013 Online only Revised for Version 5.5 (Release 2013b)
March 2014 Online only Revised for Version 6.0 (Release 2014a)
October 2014 Online only Revised for Version 6.1 (Release 2014b)
March 2015 Online only Revised for Version 6.2 (Release 2015a)
September 2015 Online only Revised for Version 6.3 (Release 2015b)
March 2016 Online only Revised for Version 6.4 (Release 2016a)
September 2016 Online only Revised for Version 6.5 (Release 2016b)
March 2017 Online only Revised for Version 6.6 (Release 2017a)
September 2017 Online only Revised for Version 6.7 (Release 2017b)
March 2018 Online only Revised for Version 6.8 (Release 2018a)
September 2018 Online only Revised for Version 6.9 (Release 2018b)
March 2019 Online only Revised for Version 6.10 (Release 2019a)
September 2019 Online only Revised for Version 6.11 (Release 2019b)
March 2020 Online only Revised for Version 6.12 (Release 2020a)
September 2020 Online only Revised for Version 7.0 (Release 2020b)
March 2021 Online only Revised for Version 7.1 (Release 2021a)
September 2021 Online only Revised for Version 7.2 (Release 2021b)
March 2022 Online only Revised for Version 8.0 (Release 2022a)
September 2022 Online only Revised for Version 8.1 (Release 2022b)

Simulink Real-Time I/O Library
1

I/O Driver Blocks . 1-2
Speedgoat I/O Modules . 1-2
Speedgoat I/O Blockset . 1-2
Simulink Real-Time Block Library . 1-2

Add I/O Blocks to Simulink Model . 1-4

Configure Block Parameters . 1-6

Async Block Library

Periodic and Nonperiodic Events
2

About RTOS Tasks and Priorities . 2-2

v

Contents

Asynchronous Event: Blocks
3

DDS

DDS Blocks
4

CAN Message Blocks Library

CAN Utility Blocks
5

EtherCAT Blocks Library

Model-Based EtherCAT Communications Support
6

Modeling EtherCAT Networks . 6-2
Blocks and Tasks . 6-2
Order of Network Events . 6-3

Install EtherCAT Network Tools TwinCAT or EC-Engineer 6-5

Hardware Setup Requirements for TwinCAT 3 6-6

Configure EtherCAT Network by Using TwinCAT 3 6-7
Scan EtherCAT Network . 6-7
Configure EtherCAT Master Node Data . 6-7
Export and Save EtherCAT Configuration by Using TwinCAT 3 6-9

Install EtherCAT Network for Execution . 6-11

Configure EtherCAT Master Node Model . 6-12
Configure EtherCAT Init Block . 6-12
Configure EtherCAT PDO Receive Blocks . 6-13
Configure EtherCAT PDO Transmit Blocks 6-14

vi Contents

Update Async SDO Block Variables by Using Complete Access Mode
. 6-15

Configure EtherCAT Model Configuration Parameters 6-23

EtherCAT Distributed Clock Algorithm . 6-25
Master Shift Mode . 6-25
Bus Shift Mode . 6-26
Limitations . 6-27

Fixed-Step Size Derivation . 6-28

EtherCAT Protocol Mapping . 6-29

EtherCAT Configurator Component Mapping 6-30

EtherCAT Data Types . 6-31

EtherCAT Init Block DC Error Values . 6-32

EtherCAT Error Codes . 6-33

EtherCAT Blocks
7

IP Internet Protocol Blocks Library

Real-Time TCP Communication Support
8

TCP Transport Protocol . 8-2

TCP Blocks
9

Real-Time UDP Communication Support
10

UDP Transport Protocol . 10-2

vii

UDP Data Exchange by Using Shared Ethernet Board 10-4
UDP Data Transfer . 10-4
Set Up slrt_ex_udpsendreceiveA . 10-5
Set Up slrt_ex_udpsendreceiveB . 10-6

UDP Communication Setup . 10-9

UDP and Variable-Size Signals . 10-10

Real-Time UDP Blocks
11

Model-Based Ethernet Communications Support
12

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks
. 12-2

Ethernet Blocks
13

SAE J1939 Blocks Library

SAE J1939
14

SAE J1939 Blocks . 14-2

viii Contents

SAE J1939 Blocks
15

Logitech

Logitech Blocks
16

LIN

LIN Blocks
17

Logging Blocks Library

Logging Blocks
18

Profiling Blocks Library

Profiling Blocks
19

PTP Precision Time Protocol Blocks Library

PTP Blocks

ix

20

Precision Time Protocol
21

Precision Time Protocol . 21-2

PTP Prerequisites . 21-4

Precision Time Protocol Blocks
22

RS232 Serial Blocks Library

Serial Communications Support
23

RS-232 Serial Communication . 23-2
Serial Connections for RS-232 . 23-2

RS-232 Legacy Drivers . 23-3
Add RS-232 Blocks . 23-3
Building and Running the Real-Time Application 23-4
Simulink Real-Time RS-232 Reference . 23-4

x Contents

Serial Communications Support: Blocks
24

Target Management

Target Management Blocks
25

Utilities

Utility Blocks
26

XCP Universal Measurement and Calibration Protocol

XCP Client Mode
27

XCP Client Mode . 27-2

Stimulation Support
28

Control and Update Stimulation of Inports to Real-Time Application
. 28-2

Stimulate Root Inport by Using MATLAB Language 28-2

xi

XCP Blocks
29

Speedgoat Blocks Library

Speedgoat Support
30

Speedgoat Target Computers and Speedgoat Support 30-2
Speedgoat I/O Hardware . 30-2
Speedgoat Communication Protocols . 30-3

xii Contents

Simulink Real-Time I/O Library

• “I/O Driver Blocks” on page 1-2
• “Add I/O Blocks to Simulink Model” on page 1-4
• “Configure Block Parameters” on page 1-6

1

I/O Driver Blocks

In this section...
“Speedgoat I/O Modules” on page 1-2
“Speedgoat I/O Blockset” on page 1-2
“Simulink Real-Time Block Library” on page 1-2

The Simulink Real-Time environment is a solution for prototyping and testing real-time systems by
using a desktop computer. To apply this solution, you add I/O blocks to your model. The blocks of the
Simulink Real-Time library provide a particular function of an I/O module. By using I/O blocks in your
model, you can generate executable code tuned specifically to your I/O requirements.

You add I/O driver blocks to your Simulink model to connect your model to I/O modules (I/O boards).
These I/O modules then connect to the sensors and actuators in a physical system.

Speedgoat I/O Modules
Speedgoat® real-time target machines are available with various I/O modules. See “Speedgoat I/O
Hardware” on page 30-2.

Speedgoat I/O Blockset
You can use the blocks in the Speedgoat I/O Blockset and the blocks in the Simulink Real-Time library
in your Simulink Real-Time model. For a description of the Speedgoat blocks, see “Speedgoat I/O
Hardware” on page 30-2.

Simulink Real-Time Block Library
A driver block does not represent an entire board, but an I/O section supported by a board. The
Simulink Real-Time library can have more than one block for each physical board. I/O driver blocks
are written as C-code S-functions (noninlined S-functions). The source code for the C-code S-
functions is included with the Simulink Real-Time software.

If your model contains I/O blocks, take I/O latency values into account for the model sample time.

To find latency values for Speedgoat boards, contact Speedgoat technical support.

You can open the I/O device driver library by using the Simulink library browser or by using the
MATLAB® command slrealtimelib. The library slrealtimelib contains sublibraries grouped by
the type of I/O function they provide.

When you double-click one of the I/O block groups, the sublibrary opens, displaying a list grouped by
manufacturer. Double-clicking one of the manufacturer groups displays the I/O device driver blocks
for the specified I/O functionality.

When you double-click one of the blocks, a Block Parameters dialog box opens, where you enter
system-specific parameters. Parameters typically include block sample time and other block-specific
parameters.

1 Simulink Real-Time I/O Library

1-2

See Also

More About
• “Add I/O Blocks to Simulink Model” on page 1-4
• “Configure Block Parameters” on page 1-6

 I/O Driver Blocks

1-3

Add I/O Blocks to Simulink Model
You can transform a Simulink model into a Simulink Real-Time model that accesses I/O drivers by
using the Simulink Real-Time block library or the Simulink Real-Time: Speedgoat I/O Blockset. In the
Simulink Real-Time block library, the highest hierarchical level in the library lists I/O function groups.
The second level lists board manufacturer groups. The manufacturer groups contain the driver blocks
for specific boards.

This example uses the Simulink model slrt_ex_osc to show how to replace Simulink blocks with
Simulink Real-Time I/O blocks. For example, at the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc'))

1 To browse the Simulink Real-Time block library, open the Library: slrealtimelib window. In the
MATLAB Command Window, type:

slrealtimelib
2 To browse the Simulink Real-Time: Speedgoat I/O Blockset, open the Library: speedgoatlib

window. In the MATLAB Command Window, type:

speedgoatlib
3 To open the model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples','slrt_ex_osc'))

The Simulink block diagram opens for the model slrt_ex_osc.

4 Open the Simulink Library Browser. Select Simulink Real-Time: Speedgoat I/O Blockset >
IO131. Drag each of these blocks to the Simulink block diagram: Speedgoat IO131 Analog input
block, Speedgoat IO131 Analog output block, and Speedgoat IO131 Setup.

The Simulink Editor adds the new I/O blocks to your model.
5 Remove the Signal Generator block and add the Speedgoat IO131 Analog input block in its place.

Remove the Scope block and add the Speedgoat IO131 Analog output block in its place. The
block parameters select the number of outputs for the block.

1 Simulink Real-Time I/O Library

1-4

6 Save the model with a new name, such as ex_slrt_iob_osc . To open the completed model, in
the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_iob_osc'))

You cannot run this model unless the required I/O board is installed in your target computer. You
can substitute driver blocks for another I/O board that is installed in the target computer.

After you add I/O blocks to the model, set up the I/O operation by selecting block parameter values.
For more information, see “Configure Block Parameters” on page 1-6.

See Also

More About
• “I/O Driver Blocks” on page 1-2
• “Configure Block Parameters” on page 1-6

 Add I/O Blocks to Simulink Model

1-5

Configure Block Parameters
The block parameters define values for blocks in your model. For example, block parameters include
channel numbers for multichannel boards, input and output voltage ranges, and sample time. For
information about configuring block parameters for Speedgoat I/O modules, see the Speedgoat
documentation at www.speedgoat.com/help.

This procedure uses the Simulink model slrt_ex_osc . To open this model, in the MATLAB
Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime', ...
'examples', 'slrt_ex_osc'))

1 In the Simulink Editor, double-click the File Log block.
2 Fill in the File Log dialog box. For example, enter a decimation value to reduce file logging data

collection.

When you change block parameter values through the block parameters dialog box, the changes take
effect when you build the real-time application. You can also change parameter values in a real-time
application without rebuilding the application. For more information, see “Tunable Block Parameters
and Tunable Global Parameters”.

See Also

More About
• “I/O Driver Blocks” on page 1-2
• “Add I/O Blocks to Simulink Model” on page 1-4

1 Simulink Real-Time I/O Library

1-6

https://www.speedgoat.com/help

Async Block Library

7

Periodic and Nonperiodic Events

2

About RTOS Tasks and Priorities
Real-time application execution tasks come from an number of model features, including:

• Each sample rate group in the model
• Function-call subsystem block connected to interrupt from an I/O module block
• Function-call subsystem block connected to a Thread Trigger block

The RTOS task scheduler automates scheduling of tasks for all sample rates in the model. You can
configure your model to influence task priority of some rate-related tasks. For more information, see
“Concurrent Execution on Simulink Real-Time”.

See Also
Thread Trigger

Related Examples
• “Concurrent Execution on Simulink Real-Time”

More About
• “Execution Modes”

2 Periodic and Nonperiodic Events

2-2

Asynchronous Event: Blocks

3

Thread Trigger
Call downstream function-call subsystem when selected input edge transition occurs
Library: Simulink Real-Time / Async

Description
When the selected input edge transition occurs, the Thread Trigger block calls the downstream
Function-Call Subsystem block or Triggered Subsystem block and sets the interrupt priority of the
task. The block checks for the edge transition at the block sample rate.

If the input transition occurs while the task is running, a CPU overload occurs on the target
computer.

Ports
Input

T — Trigger input tested for selected transition
boolean

Detects the edge type that is selected by using the Trigger Edge parameter as 1 for detected and 0
for not detected..
Example: 0

Output

F — Function call output for task
function call

Outputs the call to the downstream function and provides the thread scheduling priority for the task

Parameters
Trigger Edge — Selects trigger edge type
Rising Edge (default) | Falling Edge | Both Edges

Selects the trigger edge type that is detected by the block input.
Programmatic Use
Block Parameter: edge

ISR Task Priority — Selects the ISR task priority for function
245 (high priority) (default) | 235 (medium priority) | 225 (low priority)

Selects the interrupt service routine (ISR) task priority for the function call. You can select task
priority values from 254 (highest priority) to 193 (lowest priority).

3 Asynchronous Event: Blocks

3-2

The Thread Trigger block provides means to call a Function-Call Subsystem block or Triggered
Subsystem block that is a separate model thread. This thread can run with higher or lower priority
than other execution threads. Each rate group in the model executes as a different execution thread.
For more information, see “About RTOS Tasks and Priorities” on page 2-2.

Programmatic Use
Block Parameter: taskpri

Version History
Introduced in R2020b

Removed Thread Trigger Block Sample Time Parameter

The Sample Time parameter for the Thread Trigger block is removed. The block inherits sample time
from the input signal to the block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“About RTOS Tasks and Priorities” on page 2-2

 Thread Trigger

3-3

DDS

5

DDS Blocks

DDS Blockset provides apps and blocks for modeling and simulating software applications that
publish or subscribe to Data Distribution Service (DDS) middleware. The Simulink Real-Time DDS
blocks support sending and receiving DDS messages.

4

DDS Receive
Receive a DDS message
Library: Simulink Real-Time / DDS

Description
The DDS Receive block receives a DDS message for a selected topic in the Simulink Real-Time model.
The block allows you to attach a simulink data dictionary containing the DDS data definitions with the
model.

The DDS Receive and DDS Send blocks let Simulink Real-Time applications communicate with Data
Distribution Service (DDS) middleware applications through a shared Simulink data dictionary. These
blocks are compatible with the DDS Blockset, which includes a DDS dictionary that lets you manage,
create, and edit your DDS definitions in Simulink. You can import DDS specifications as XML files to
create a skeleton Simulink model as a starting point for developing algorithms for DDS applications.
For more information, see “How does DDS Blockset Work?” (DDS Blockset).

The DDS Receive block receives a DDS message for a selected topic in the real-time application. You
attach a Simulink data dictionary containing the DDS data definitions to the block. You can create a
new data dictionary or associate an existing data dictionary to the block and select a topic, data
writer path, and Quality of Service (QoS) from the data dictionary.

The DDS Receive block and DDS Send block have some limitations:

• You can use these blocks in the top level of a model. These blocks cannot be used in the
referenced models.

• You can use these blocks in a real-time application. These blocks cannot be used for simulation in
normal mode, accelerator mode, or rapid accelerator mode.

• You cannot use these blocks in protected models.

Ports
Output

DDS Msg — DDS message
simulink message of Bus type

Returns the DDS message sent.

Parameters
Data Dictionary — Associate a data dictionary
string | char

4 DDS Blocks

4-2

Associate a simulink data dictionary containing dds data definitions or create a new data dictionary
for the model.

Programmatic Use
Block Parameter: datadict

Topic — Select a topic name
string scalar | char vector

Select a topic from the drop-down menu for the data.

Programmatic Use
Block Parameter: topic

Reader XML Path — Data writer XML path
string (default)

select the data writer XML path.

Programmatic Use
Block Parameter: xmlPath

Reader QoS — Quality of service
string (default)

Select the quality of service from the drop-down menu.

Programmatic Use
Block Parameter: qos

Sample time — Sample time
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
DDS Send

Topics
“How does DDS Blockset Work?” (DDS Blockset)

 DDS Receive

4-3

DDS Send
Send a DDS message
Library: Simulink Real-Time / DDS

Description
The DDS Receive and DDS Send blocks let Simulink Real-Time applications communicate with Data
Distribution Service (DDS) middleware applications through a shared Simulink data dictionary. These
blocks are compatible with the DDS Blockset, which includes a DDS dictionary that lets you manage,
create, and edit your DDS definitions in Simulink. You can import DDS specifications as XML files to
create a skeleton Simulink model as a starting point for developing algorithms for DDS applications.
For more information, see “How does DDS Blockset Work?” (DDS Blockset).

The DDS Send block sends a DDS message for a selected topic in the real-time application. You can
attach a Simulink data dictionary containing the DDS data definitions to the block. You can create a
new data dictionary or associate an existing data dictionary to the block and select a topic, data
writer path, and Quality of Service (QoS) from the data dictionary.

The DDS Receive block and DDS Send block have some limitations:

• You can use these blocks in the top level of a model. These blocks cannot be used in the
referenced models.

• You can use these blocks in a real-time application. These blocks cannot be used for simulation in
normal mode, accelerator mode, or rapid accelerator mode.

• You cannot use these blocks in protected models.

Ports
Input

DDS Msg — DDS message
simulink message of Bus type

Input the DDS message to be sent to a target.
Example: message

Parameters
Data Dictionary — Associate a data dictionary
string | char

Associate a simulink data dictionary containing dds data definitions or create a new data dictionary
for the model.

4 DDS Blocks

4-4

Programmatic Use
Block Parameter: datadict

Topic — Select a topic name
string scalar | char vector

Select a topic from the drop-down menu for the data.

Programmatic Use
Block Parameter: topic

Writer XML Path — Data writer XML path
string (default)

select the data writer XML path.

Programmatic Use
Block Parameter: xmlPath

Writer QoS — Quality of service
string (default)

Select the quality of service from the drop-down menu.

Programmatic Use
Block Parameter: qos

Sample time — Sample time
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
DDS Receive

Topics
“How does DDS Blockset Work?” (DDS Blockset)

 DDS Send

4-5

CAN Message Blocks Library

7

CAN Utility Blocks

5

CAN Pack
Pack individual signals into CAN message
Library: Vehicle Network Toolbox / CAN Communication

Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Pack block loads signal data into a CAN message at specified intervals during the
simulation.

To use this block, you must have a license for Simulink software.

The CAN Pack block supports:

• Simulink Accelerator™ rapid accelerator mode. You can speed up the execution of Simulink
models.

• Model referencing. Your model can include other Simulink models as modular components.

For more information, see “Design Your Model for Effective Acceleration”.

Tip

• This block can be used to encode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block. See “J1939”.

Ports
Input

Data — CAN message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals you specify for the block. For example, if your message has four
signals, the block can have four input ports.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. If your signal information consists of signed or unsigned
integers greater than 32 bits long, code generation is not supported.

5 CAN Utility Blocks

5-2

Output

CAN Msg — CAN message output
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one output port, CAN Msg. The CAN Pack block takes the specified input signals and
packs them into a CAN message. The output data type is determined by the Output as bus
parameter setting.

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message.

File names that contain non-alphanumeric characters such as equal signs, ampersands, and so on are
not valid CAN database file names. You can use periods in your database name. Before you use the
CAN database files, rename them with non-alphanumeric characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

 CAN Pack

5-3

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to input raw data or manually specify signals. This option is not available if you choose to use signals
from a CANdb file.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message ID
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be a positive integer from 0 through 2047 for a
standard identifier and from 0 through 536870911 for an extended identifier. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to input raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your data input, the CANdb file defines the length of your message. If not, this field
defaults to 8. This option is available if you choose to input raw data or manually specify signals.

5 CAN Utility Blocks

5-4

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output as bus — CAN message as bus
off (default) | on

Select this option for the block to output CAN messages as a Simulink bus signal. For more
information on Simulink bus objects, see “Composite Interfaces”.

Programmatic Use
Block Parameter: BusOutput
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN signal

Add a new signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

 CAN Pack

5-5

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel®). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

5 CAN Utility Blocks

5-6

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest

 CAN Pack

5-7

Address
• BE: Where byte order is in big-endian format (Motorola®). In this format you count bits from

the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

5 CAN Utility Blocks

5-8

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

 CAN Pack

5-9

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block packs the signals into the CAN message at each time step:

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has these signals with the following types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to pack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. For more information, see the Data input as parameter conversion
formula.

5 CAN Utility Blocks

5-10

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed the settings.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CAN Unpack | CAN FD Pack

Topics
“Design Your Model for Effective Acceleration”

 CAN Pack

5-11

CAN Unpack
Unpack individual signals from CAN messages
Library: Vehicle Network Toolbox / CAN Communication

Embedded Coder / Embedded Targets / Host Communication
Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN MSG blocks

Description
The CAN Unpack block unpacks a CAN message into signal data using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN Unpack block supports:

• The use of Simulink Accelerator Rapid Accelerator mode. Using this feature, you can speed up the
execution of Simulink models.

• The use of model referencing. Using this feature, your model can include other Simulink models
as modular components.

For more information on these features, see “Design Your Model for Effective Acceleration”.

Tip

• To process every message coming through a channel, it is recommended that you use the CAN
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems”.

• This block can be used to decode the signals of J1939 parameter groups up to 8 bytes. However, to
work with J1939 messages, it is preferable to use the blocks in the J1939 Communication block
library instead of this block. See “J1939”.

Ports
Input

CAN Msg — CAN message input
CAN_MESSAGE | CAN_MESSAGE_BUS

This block has one input port, CAN Msg. The block takes the specified input CAN messages and
unpacks their signal data to separate outputs.

The block supports the following signal data types: single, double, int8, int16, int32, int64, uint8,
uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

5 CAN Utility Blocks

5-12

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Data — CAN signal output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The block has one output port by default. The number of output ports is dynamic and depends on the
number of signals that you specify for the block to output. For example, if your message has four
signals, the block can have four output ports.

For signals specified manually or by a CANdb, the default output data type for CAN signals is double.
To specify other types, use a Signal Specification block. This allows the block to support the following
output signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and
boolean. The block does not support fixed-point types.

Additional output ports can be added by selecting the options in the parameters Output ports pane.
For more information, see the parameters Output identifier, Output timestamp, Output
error, Output remote, Output length, and Output status.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal

 CAN Unpack

5-13

definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth are not valid CAN database file names. You
can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — CAN message name
CAN Msg (default) | character vector

Specify a name for your CAN message. The default is CAN Msg. This option is available if you choose
to output raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

CAN Identifier — CAN message identifier
0 (default) | 0 to 536870911

Specify your CAN message ID. This number must be an integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify -1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values by using the hex2dec function. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier

5 CAN Utility Blocks

5-14

Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN message length
8 (default) | 0 to 8

Specify the length of your CAN message from 0 to 8 bytes. If you are using CANdb specified
signals for your output data, the CANdb file defines the length of your message. Otherwise, this
field defaults to 8. This option is available if you choose to output raw data or manually specify
signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message. The start bit must be an integer from 0 through 63.

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64.

 CAN Unpack

5-15

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

5 CAN Utility Blocks

5-16

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

 CAN Unpack

5-17

Address
• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from

the least-significant bit to the most-significant bit. For example, if you pack one byte of data in
big-endian format, with the start bit at 20, the data bit table resembles this figure.

5 CAN Utility Blocks

5-18

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

 CAN Unpack

5-19

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Multiplex type
Specify how the block unpacks the signals from the CAN message at each time step:

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide must match the Multiplexor signal value at run time for the block to unpack
the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

5 CAN Utility Blocks

5-20

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default)

Select this option to output a CAN message identifier. The data type of this port is uint32.

Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.

Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: RemotePort

 CAN Unpack

5-21

Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives a new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2009a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
CAN Pack | CAN FD Unpack

Topics
“Design Your Model for Effective Acceleration”

5 CAN Utility Blocks

5-22

CAN FD Pack
Pack individual signals into message for CAN FD bus
Library: Vehicle Network Toolbox / CAN FD Communication

Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Pack block loads signal data into a message at specified intervals during the simulation.

To use this block, you also need a license for Simulink software.

The CAN FD Pack block supports:

• The use of Simulink Accelerator mode. Using this feature, you can speed up the execution of
Simulink models. For more information, see “Design Your Model for Effective Acceleration”.

Tip

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block. See “J1939”.

Ports
Input

Data — CAN FD message signal input
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN FD Pack block has one input port by default. The number of block inputs is dynamic and
depends on the number of signals that you specify for the block. For example, if your message has
four signals, the block can have four input ports.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

Output

Msg — CAN FD message output
CAN_FD_MESSAGE_BUS

This block has one output port, Msg. The CAN FD Pack block takes the specified input signals and
packs them into a CAN FD message, output as a Simulink CAN_FD_MESSAGE_BUS signal. For more
information on Simulink bus objects, see “Composite Interfaces”.

 CAN FD Pack

5-23

Parameters
Data input as — Select your data signal
raw data (default) | manually specified signals | CANdb specified signals

• raw data: Input data as a uint8 vector array. If you select this option, you only specify the
message fields. all other signal parameter fields are unavailable. This option opens only one input
port on your block.

The conversion formula is:

raw_value = (physical_value - Offset) / Factor

where physical_value is the original value of the signal and raw_value is the packed signal
value.

• manually specified signals: Allows you to specify data signal definitions. If you select this
option, use the Signals table to create your signals. The number of block inputs depends on the
number of signals you specify.

• CANdb specified signals: Allows you to specify a CAN database file that contains message
and signal definitions. If you select this option, select a CANdb file. The number of block inputs
depends on the number of signals specified in the CANdb file for the selected message.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input through a CANdb file in the Data is
input as list. Click Browse to find the CANdb file on your system. The message list specified in the
CANdb file populates the Message section of the dialog box. The CANdb file also populates the
Signals table for the selected message. File names that contain non-alphanumeric characters such as
equal signs, ampersands, and so on are not valid CAN database file names. You can use periods in
your database name. Before you use the CAN database files, rename them with non-alphanumeric
characters.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — CAN message list
array of character vectors

This option is available if you specify that your data is input through a CANdb file in the Data is
input as field and you select a CANdb file in the CANdb file field. Select the message to display
signal details in the Signals table.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

5 CAN Utility Blocks

5-24

Name — CAN FD message name
CAN Msg (default) | character vector

Specify a name for your CAN FD message. The default is CAN Msg. This option is available if you
choose to input raw data or manually specify signals. This option is not available if you choose to use
signals from a CANdb file.
Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Protocol mode — CAN FD message protocol
CAN FD (default) | CAN

Specify the message protocol mode.
Programmatic Use
Block Parameter: ProtocolMode
Type: string | character vector
Values: 'CAN FD' | 'CAN'
Default: 'CAN FD'

Identifier type — CAN identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your CAN message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to input raw data or manually specify signals. For CANdb
specified signals, the Identifier type inherits the type from the database.
Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be a positive integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. You can also specify hexadecimal
values by using the hex2dec function. This option is available if you choose to input raw data or
manually specify signals.
Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

Length (bytes) — CAN FD message length
8 (default) | 0 to 64

Specify the length of your message. For CAN messages the value can be 0 to 8 bytes; for CAN FD the
value can be 0 to 8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals
for your data input, the CANdb file defines the length of your message. This option is available if you
choose to input raw data or manually specify signals.

 CAN FD Pack

5-25

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Remote frame — CAN message as remote frame
off (default) | on

(Disabled for CAN FD protocol mode.) Specify the CAN message as a remote frame.

Programmatic Use
Block Parameter: Remote
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Bit Rate Switch (BRS) — Enable bit rate switch
off (default) | on

(Disabled for CAN protocol mode.) Enable bit rate switch.

Programmatic Use
Block Parameter: BRSSwitch
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Add signal — Add CAN FD signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN FD signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

This table appears if you choose to specify signals manually or define signals by using a CANdb file.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to manually specified signals.

If you have selected to specify signals manually, create your signals in this table. Each signal that you
create has these values:

5 CAN Utility Blocks

5-26

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

Byte order
Select either of these options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least significant bit, to the most significant bit. For example, if you pack one byte of data in
little-endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

5-27

Little-Endian Byte Order Counted from the Least-Significant Bit to the Highest

5 CAN Utility Blocks

5-28

Address
• BE: Where byte order is in big-endian format (Motorola). In this format you count bits from the
least-significant bit to the most-significant bit. For example, if you pack one byte of data in big-
endian format, with the start bit at 20, the data bit table resembles this figure.

 CAN FD Pack

5-29

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

5 CAN Utility Blocks

5-30

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder® you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block packs the signals into the message at each time step:

• Standard: The signal is packed at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is packed. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is packed if the value of the Multiplexor signal (mode signal) at

run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these types and values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block packs Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block packs Signal-B along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block packs Signal-C along with
Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not pack either of the Multiplexed signals
in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
pack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

 CAN FD Pack

5-31

Offset
Specify the Offset value to apply to convert the physical value (signal value) to the raw value
packed in the message. See the Data input as parameter conversion formula to understand how
physical values are converted to raw values packed into a message.

Min, Max
Define a range of signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CAN FD Unpack | CAN Pack

Topics
“Design Your Model for Effective Acceleration”
“Composite Interfaces”

5 CAN Utility Blocks

5-32

CAN FD Unpack
Unpack individual signals from CAN FD messages
Library: Vehicle Network Toolbox / CAN FD Communication

Embedded Coder Support Package for Texas Instruments
C2000 Processors / Target Communication
Simulink Real-Time / CAN / CAN-FD MSG blocks

Description
The CAN FD Unpack block unpacks a CAN FD message into signal data by using the specified output
parameters at every time step. Data is output as individual signals.

To use this block, you also need a license for Simulink software.

The CAN FD Unpack block supports:

• Simulink Accelerator mode. You can speed up the execution of Simulink models. For more
information, see “Design Your Model for Effective Acceleration”.

Tip

• To process every message coming through a channel, it is recommended that you use the CAN FD
Unpack block in a function trigger subsystem. See “Using Triggered Subsystems”.

• To work with J1939 messages, use the blocks in the J1939 Communication block library instead of
this block. See “J1939”.

Ports
Input

Msg — CAN FD message input
CAN_FD_MESSAGE_BUS

This block has one input port, Msg. The CAN FD Unpack block takes the specified input CAN
messages and unpacks their signal data to separate outputs.

The block supports the following input signal data types: single, double, int8, int16, int32, int64,
uint8, uint16, uint32, uint64, and boolean. The block does not support fixed-point data types.

Code generation to deploy models to targets. Code generation is not supported if your signal
information consists of signed or unsigned integers greater than 32 bits long.

 CAN FD Unpack

5-33

Output

Data — CAN message output
single | double | int8 | int16 | int32 | int64 | uint32 | uint64 | boolean

The CAN FD Unpack block has one output port by default. The number of data output ports is
dynamic and depends on the number of signals you specify for the block to output. For example, if
your block has four signals, it has four output ports, labeled by signal name.

For manually or CANdb specified signals, the default output signal data type is double. To specify
other types, use a Signal Specification block. This allows the block to support the following output
signal data types: single, double, int8, int16, int32, int64, uint8, uint16, uint32, uint64, and boolean.
The block does not support fixed-point types.

Additional output ports can be added by the options in the parameters Output ports pane.

Parameters
Data to output as — Select your data signal
raw data (default) | manually specify signals | CANdb specified signals

• raw data: Output data as a uint8 vector array. If you select this option, you specify only the
message fields. The other signal parameter fields are unavailable. This option opens only one
output port on your block.

The conversion formula is:

physical_value = raw_value * Factor + Offset

where raw_value is the unpacked signal value and physical_value is the scaled signal value.
• manually specified signals: You can specify data signals. If you select this option, use the

Signals table to create your signals message manually. The number of output ports on your block
depends on the number of signals that you specify. For example, if you specify four signals, your
block has four output ports.

• CANdb specified signals: You can specify a CAN database file that contains data signals. If
you select this option, select a CANdb file. The number of output ports on your block depends on
the number of signals specified in the CANdb file. For example, if the selected message in the
CANdb file has four signals, your block has four output ports.

Programmatic Use
Block Parameter: DataFormat
Type: string | character vector
Values: 'raw data' | 'manually specified signals' | 'CANdb specified signals'
Default: 'raw data'

CANdb file — CAN database file
character vector

This option is available if you specify that your data is input via a CANdb file in the Data to be
output as list. Click Browse to find the CANdb file on your system. The messages and signal
definitions specified in the CANdb file populate the Message section of the dialog box. The signals
specified in the CANdb file populate the Signals table. File names that contain non-alphanumeric
characters such as equal signs, ampersands, and so forth, are not valid CAN database file names. You

5 CAN Utility Blocks

5-34

can use periods in your database name. Rename CAN database files with non-alphanumeric
characters before you use them.

Programmatic Use
Block Parameter: CANdbFile
Type: string | character vector

Message list — Message list
array of character vectors

This option is available if you specify in the Data to be output as list that your data is to be output
as a CANdb file and you select a CANdb file in the CANdb file field. You can select the message that
you want to view. The Signals table then displays the details of the selected message.

Programmatic Use
Block Parameter: MsgList
Type: string | character vector

Name — Message name
CAN Msg (default) | character vector

Specify a name for your message. The default is Msg. This option is available if you choose to output
raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgName
Type: string | character vector

Identifier type — Identifier type
Standard (11-bit identifier) (default) | Extended (29-bit identifier)

Specify whether your message identifier is a Standard or an Extended type. The default is
Standard. A standard identifier is an 11-bit identifier and an extended identifier is a 29-bit identifier.
This option is available if you choose to output raw data or manually specify signals. For CANdb-
specified signals, the Identifier type inherits the type from the database.

Programmatic Use
Block Parameter: MsgIDType
Type: string | character vector
Values: 'Standard (11-bit identifier)' | 'Extended (29-bit identifier)'
Default: 'Standard (11-bit identifier)'

Identifier — Message identifier
0 (default) | 0 .. 536870911

Specify your message ID. This number must be an integer from 0 through 2047 for a standard
identifier and from 0 through 536870911 for an extended identifier. If you specify –1, the block
unpacks the messages that match the length specified for the message. You can also specify
hexadecimal values using the hex2dec function. This option is available if you choose to output raw
data or manually specify signals.

Programmatic Use
Block Parameter: MsgIdentifier
Type: string | character vector
Values: '0' to '536870911'

 CAN FD Unpack

5-35

Length (bytes) — CAN message length
8 (default) | 0 .. 8

Specify the length of your message. For CAN messages the value can be 0-8 bytes; for CAN FD the
value can be 0-8, 12, 16, 20, 24, 32, 48, or 64 bytes. If you are using CANdb specified signals
for your output data, the CANdb file defines the length of your message. This option is available if you
choose to output raw data or manually specify signals.

Programmatic Use
Block Parameter: MsgLength
Type: string | character vector
Values: '0' to '8', '12', '16', '20', '24', '32', '48', '64'
Default: '8'

Add signal — Add CAN signal

Add a signal to the signal table.

Programmatic Use

None

Delete signal — Remove CAN signal

Remove the selected signal from the signal table.

Programmatic Use

None

Signals — Signals table
table

If you choose to specify signals manually or define signals by using a CANdb file, this table appears.

If you are using a CANdb file, the data in the file populates this table and you cannot edit the fields.
To edit signal information, switch to specified signals.

If you have selected to specify signals manually, create your signals manually in this table. Each
signal that you create has these values:

Name
Specify a descriptive name for your signal. The Simulink block in your model displays this name.
The default is Signal [row number].

Start bit
Specify the start bit of the data. The start bit is the least significant bit counted from the start of
the message data. For CAN the start bit must be an integer from 0 through 63, for CAN FD 0
through 511, within the number of bits in the message. (Note that message length is specified in
bytes.)

Length (bits)
Specify the number of bits the signal occupies in the message. The length must be an integer
from 1 through 64. The sum of all the signal lengths in a message is limited to the number of bits
in the message length; that is, all signals must cumulatively fit within the length of the message.
(Note that message length is specified in bytes and signal length in bits.)

5 CAN Utility Blocks

5-36

Byte order
Select either of the following options:

• LE: Where the byte order is in little-endian format (Intel). In this format you count bits from
the least-significant bit to the most-significant bit and proceeding to the next higher byte as
you cross a byte boundary. For example, if you pack one byte of data in little-endian format,
with the start bit at 20, the data bit table resembles this figure.

 CAN FD Unpack

5-37

Little-Endian Byte Order Counted from the Least Significant Bit to the Highest

5 CAN Utility Blocks

5-38

Address
• BE: Where the byte order is in big-endian format (Motorola). In this format you count bits from

the least-significant bit to the most-significant bit and proceeding to the next lower byte as you
cross a byte boundary. For example, if you pack one byte of data in big-endian format, with the
start bit at 20, the data bit table resembles this figure.

 CAN FD Unpack

5-39

Big-Endian Byte Order Counted from the Least Significant Bit to the Lowest Address

5 CAN Utility Blocks

5-40

Data type
Specify how the signal interprets the data in the allocated bits. Choose from:

• signed (default)
• unsigned
• single
• double

Note: If you have a double signal that does not align exactly to the message byte boundaries,
to generate code with Embedded Coder you must check Support long long under Device
Details in the Hardware Implementation pane of the Configuration Parameters dialog.

Multiplex type
Specify how the block unpacks the signals from the message at each time step:

• Standard: The signal is unpacked at each time step.
• Multiplexor: The Multiplexor signal, or the mode signal is unpacked. You can specify only

one Multiplexor signal per message.
• Multiplexed: The signal is unpacked if the value of the Multiplexor signal (mode signal)

at run time matches the configured Multiplex value of this signal.

For example, a message has four signals with these values.

Signal Name Multiplex Type Multiplex Value
Signal-A Standard Not applicable
Signal-B Multiplexed 1
Signal-C Multiplexed 0
Signal-D Multiplexor Not applicable

In this example:

• The block unpacks Signal-A (Standard signal) and Signal-D (Multiplexor signal) in every time
step.

• If the value of Signal-D is 1 at a particular time step, then the block unpacks Signal-B along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is 0 at a particular time step, then the block unpacks Signal-C along
with Signal-A and Signal-D in that time step.

• If the value of Signal-D is not 1 or 0, the block does not unpack either of the Multiplexed
signals in that time step.

Multiplex value
This option is available only if you have selected the Multiplex type to be Multiplexed. The
value you provide here must match the Multiplexor signal value at run time for the block to
unpack the Multiplexed signal. The Multiplex value must be a positive integer or zero.

Factor
Specify the Factor value applied to convert the unpacked raw value to the physical value (signal
value). For more information, see the Data input as parameter conversion formula.

 CAN FD Unpack

5-41

Offset
Specify the Offset value applied to convert the physical value (signal value) to the unpacked raw
value. For more information, see the Data input as parameter conversion formula.

Min, Max
Define a range of raw signal values. The default settings are -Inf (negative infinity) and Inf,
respectively. For CANdb specified signals, these settings are read from the CAN database. For
manually specified signals, you can specify the minimum and maximum physical value of the
signal. By default, these settings do not clip signal values that exceed them.

Programmatic Use
Block Parameter: SignalInfo
Type: string | character vector

Output identifier — Add CAN ID output port
off (default) | on

Select this option to output a CAN message identifier. The data type of this port is uint32.
Programmatic Use
Block Parameter: IDPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output timestamp — Add Timestamp output port
off (default) | on

Select this option to output the message timestamp. This value indicates when the message was
received, measured as the number of seconds elapsed since the model simulation began. This option
adds a new output port to the block. The data type of this port is double.
Programmatic Use
Block Parameter: TimestampPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output error — Add Error output port
off (default) | on

Select this option to output the message error status. This option adds a new output port to the block.
An output value of 1 on this port indicates that the incoming message is an error frame. If the output
value is 0, there is no error. The data type of this port is uint8.
Programmatic Use
Block Parameter: ErrorPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output remote — Add Remote output port
off (default) | on

Select this option to output the message remote frame status. This option adds a new output port to
the block. The data type of this port is uint8.

5 CAN Utility Blocks

5-42

Programmatic Use
Block Parameter: RemotePort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output length — Add Length output port
off (default) | on

Select this option to output the length of the message in bytes. This option adds a new output port to
the block. The data type of this port is uint8.

Programmatic Use
Block Parameter: LengthPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output status — Add Status output port
off (default) | on

Select this option to output the message received status. The status is 1 if the block receives new
message and 0 if it does not. This option adds a new output port to the block. The data type of this
port is uint8.

Programmatic Use
Block Parameter: StatusPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Bit Rate Switch (BRS) — Add BRS output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message bit rate switch. This option adds
a new output port to the block. The data type of this port is boolean.

Programmatic Use
Block Parameter: BRSPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Output Error Status Indicator (ESI) — Add ESI output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message error status. This option adds a
new output port to the block. The data type of this port is boolean.

Programmatic Use
Block Parameter: ESIPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

 CAN FD Unpack

5-43

Output Data Length Code (DLC) — Add DLC output port
off (default) | on

(Disabled for CAN protocol.) Select this option to output the message data length. This option adds a
new output port to the block. The data type of this port is double.

Programmatic Use
Block Parameter: DLCPort
Type: string | character vector
Values: 'off' | 'on'
Default: 'off'

Version History
Introduced in R2018a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Blocks
CAN FD Pack

Topics
“Design Your Model for Effective Acceleration”
“Composite Interfaces”

5 CAN Utility Blocks

5-44

EtherCAT Blocks Library

45

Model-Based EtherCAT Communications
Support

• “Modeling EtherCAT Networks” on page 6-2
• “Install EtherCAT Network Tools TwinCAT or EC-Engineer” on page 6-5
• “Hardware Setup Requirements for TwinCAT 3” on page 6-6
• “Configure EtherCAT Network by Using TwinCAT 3” on page 6-7
• “Install EtherCAT Network for Execution” on page 6-11
• “Configure EtherCAT Master Node Model” on page 6-12
• “EtherCAT Distributed Clock Algorithm” on page 6-25
• “Fixed-Step Size Derivation” on page 6-28
• “EtherCAT Protocol Mapping” on page 6-29
• “EtherCAT Configurator Component Mapping” on page 6-30
• “EtherCAT Data Types” on page 6-31
• “EtherCAT Init Block DC Error Values” on page 6-32
• “EtherCAT Error Codes” on page 6-33

6

Modeling EtherCAT Networks
Ethernet for Control Automation (EtherCAT) is an open Ethernet network protocol for real-time
distributed control, for example in automotive and industrial systems. The EtherCAT protocol
provides:

• Deterministic and fast cycle times
• Inexpensive I/O module cost

EtherCAT networks consist of one master node and several slave nodes. The Simulink Real-Time
EtherCAT sublibrary supports only the master node of an EtherCAT network. You cannot emulate
slave nodes by using the blocks in the EtherCAT sublibrary. You can use these blocks to prototype
multiple EtherCAT networks by using multiple Ethernet cards.

You model an EtherCAT network by using one of the third-party EtherCAT configurators: TwinCAT® 3
from Beckhoff® or EC-Engineer from Acontis.

To map the network model into a Simulink Real-Time model, become familiar with these mappings:

• “EtherCAT Protocol Mapping” on page 6-29
• “EtherCAT Configurator Component Mapping” on page 6-30

Blocks and Tasks
At a minimum, each EtherCAT model must contain an EtherCAT Init block. The EtherCAT Init block
contains a reference to an EtherCAT Network Information (ENI) file. The ENI file describes the
network, including the device variables of the network.

If you generate the configuration file by using TwinCAT 3, use the software to create at least one
cyclic input/output task. Link this task to at least one input channel and one output channel on each
slave device. If you generate the file by using Acontis EC-Engineer, the software creates one default
task linked to all slave device input/output channels. The task rate equals the sample time of the
EtherCAT blocks.

When you know the input/output cycle ticks, in the Model Configuration Parameters dialog box, set
the Fixed-step size to a value that is consistent with these constraints:

• The cycle tick of all EtherCAT slave devices.
• The sample times of all other blocks in the Simulink model.

For more information, see “Fixed-Step Size Derivation” on page 6-28.

When you know the device variables that you are using in your model, add an EtherCAT PDO Receive
or EtherCAT PDO Transmit block for every EtherCAT device variable. When you add these blocks to
the model, the block obtains the list of device variables from the configuration file in the EtherCAT
Init block. When you specify a device variable in the block dialog box, the software updates the block
information with device variable information from the configuration file.

To transmit CANopen over EtherCAT (CoE) information through your network, add SDO/CoE blocks
to your model. To transmit by using the SERCOS (SErial Real time COmmunication Specification)
over EtherCAT (SoE) interface through your network, add SSC/SoE blocks to your model.

The SDO/CoE blocks and SSC/SoE block s come in two types, synchronous and asynchronous. From
the EtherCAT perspective, there is little difference in the behavior of these types. The difference

6 Model-Based EtherCAT Communications Support

6-2

occurs during the execution of the real-time application. The synchronous blocks halt execution while
the blocks wait for a response. The asynchronous blocks continue executing and poll the I/O module
for a response.

To avoid a CPU overload, set the sample time for the synchronous blocks to a value at least three
times of that for the PDO blocks.

To track the state of the network or force the network into a particular state, add an EtherCAT Get
State or EtherCAT Set State block.

Order of Network Events
The EtherCAT Init block schedules network events in Phase 1 and Phase 2.

Phase 1

1 Read data from EtherCAT variables from the last received frame into EtherCAT PDO Receive
blocks.

2 Use either of these blocks in any order:

• EtherCAT PDO Receive — Processes data read from the last frame received from a slave
device.

• EtherCAT PDO Transmit — Buffers data to send in the next frame to a slave device.
3 Use each of these blocks in any order. Synchronous upload and download take at least three ticks

of the fastest PDO cycle tick to complete processing.

• EtherCAT Sync SDO Upload — Queues an SDO frame with new value, waits for response.
• EtherCAT Sync SDO Download — Queues an SDO frame with request for data, waits for

response.
• EtherCAT Async SDO Upload — Queues an SDO frame with new value, checks for response,

continues execution.
• EtherCAT Async SDO Download — Queues an SDO frame with request for data, checks for

response, continues execution.
• EtherCAT Sync SSC/SoE Upload — Queues an SSC/SoE frame with new value, waits for

response.
• EtherCAT Sync SSC/SoE Download — Queues an SSC/SoE frame with request for data, waits

for response.
• EtherCAT Async SSC/SoE Upload — Queues an SSC/SoE frame with new value, checks for

response, continues execution.
• EtherCAT Async SSC/SoE Download — Queues an SSC/SoE frame with request for data,

checks for response, continues execution.
• EtherCAT Get State — Reads current state of EtherCAT network.
• EtherCAT Set State — Queues request to change current state of EtherCAT network.

Phase 2

1 Send the PDO frames followed by the next available queued SDO frames.

 Modeling EtherCAT Networks

6-3

See Also
EtherCAT Init | EtherCAT PDO Receive | EtherCAT PDO Transmit | EtherCAT Sync SDO Upload |
EtherCAT Sync SDO Download | EtherCAT Async SDO Upload | EtherCAT Async SDO Download |
EtherCAT Sync SSC/SoE Upload | EtherCAT Sync SSC/SoE Download | EtherCAT Async SSC/SoE
Upload | EtherCAT Async SSC/SoE Download | EtherCAT Get State | EtherCAT Set State

More About
• “Fixed-Step Size Derivation” on page 6-28
• “EtherCAT Protocol Mapping” on page 6-29
• “EtherCAT Configurator Component Mapping” on page 6-30
• “EtherCAT Data Types” on page 6-31
• “EtherCAT Init Block DC Error Values” on page 6-32

6 Model-Based EtherCAT Communications Support

6-4

Install EtherCAT Network Tools TwinCAT or EC-Engineer
To configure and diagnose your EtherCAT network, install third-party EtherCAT software. Example
vendors and products are:

• acontis technologies GmbH, EC-Engineer
• Beckhoff Automation GmbH, TwinCAT 3

For TwinCAT 3 requirements, see “Hardware Setup Requirements for TwinCAT 3” on page 6-6. To
install the TwinCAT 3 network and configuration software:

1 Install a dedicated, EtherCAT compatible Ethernet card on the development computer.
2 Download or buy the Beckhoff TwinCAT 3 configurator (www.beckhoff.com).
3 Install Microsoft® Visual Studio® on your development computer.

TwinCAT 3 uses the Microsoft Visual Studio IDE desktop as its user interface. For the required
version, see the TwinCAT 3 documentation.

4 Install the TwinCAT 3 software on your development computer.

The next task is “Configure EtherCAT Network by Using TwinCAT 3” on page 6-7.

See Also

External Websites
• www.beckhoff.com
• www.acontis.com/en/

 Install EtherCAT Network Tools TwinCAT or EC-Engineer

6-5

https://www.acontis.com/
https://www.beckhoff.com
https://www.beckhoff.com
https://www.beckhoff.com
https://www.acontis.com/en/

Hardware Setup Requirements for TwinCAT 3
For the development and target computers, the EtherCAT I/O module has these requirements:

• Each Ethernet card must be compatible with EtherCAT communication.
• On the development computer, as a best practice, install two Ethernet cards in addition to your

local area network card. Dedicate one card to linking the development and target computers.
Dedicate the other card to EtherCAT network configuration.

Assign each Ethernet card a static IP address and a nonroutable subnet and netmask. You assign
an IP address on the development computer extra Ethernet port that connects to the target
EtherCAT slave network by using a switch. For information on setting up the dedicated Ethernet
card, see your network administrator.

Configure the development computer Ethernet card that you are using for EtherCAT to enable
only the Internet Protocol Version 4 (TCP/IPv4) driver. For information on creating an EtherCAT
configuration file, see the TwinCAT 3 documentation.

• On the target computer, consult with Speedgoat support for configuration of the two Ethernet
cards in the Speedgoat target machine. A typical configuration dedicates one card to linking the
development and target computers and dedicates the other card to model-based EtherCAT
communication. See “Install EtherCAT Network for Execution” on page 6-11.

With only one card on the development computer, before configuring the EtherCAT network, unplug
the Ethernet link cable and plug in the EtherCAT network cable. Before building and downloading the
model, unplug the EtherCAT network cable, plug in the Ethernet link cable, disable the EtherCAT
filter, and restart your development computer.

6 Model-Based EtherCAT Communications Support

6-6

Configure EtherCAT Network by Using TwinCAT 3
Before you start this procedure, familiarize yourself with TwinCAT 3 and its documentation.

Before configuring the network, perform the steps in “Install EtherCAT Network Tools TwinCAT or
EC-Engineer” on page 6-5.

Scan EtherCAT Network
This example uses an EtherCAT network that consists of Beckhoff EK1100, EL3062, and EL4002
modules connected in that order.

To scan an EtherCAT network by using TwinCAT 3:

1 Connect your EtherCAT network to the development computer Ethernet port dedicated to
EtherCAT. Turn on the network.

2 Start Microsoft Visual Studio and create a TwinCAT 3 project.
3 In the TwinCAT menu, start the device scanner.

The scanner reports that new I/O devices have been found.
4 In the list of Ethernet devices that the scanner detects on the development computer, select the

Ethernet device into which you plugged your EtherCAT network.

If you do not see an Ethernet device identified as an EtherCAT device, check your EtherCAT
network configuration and power supply.

5 Scan for EtherCAT boxes on your network.

The scanner reports the EtherCAT devices on your network.
6 Disable free run mode.
7 In your TwinCAT project, make sure that the scanner downloaded the required information about

your EtherCAT devices. If not a Beckhoff device, you could need the EtherCAT Slave Information
(ESI) file from the device vendor.

Configure EtherCAT Master Node Data
Before configuring the master node of an EtherCAT network, scan the network by using TwinCAT.

Create EtherCAT Task

To create and configure an EtherCAT task:

1 In TwinCAT 3, add an item to your system task list.

In the Solution Explorer display tree, open the SYSTEM subtree and use a right-click on the
Tasks entry and choose Add New Item. In the new dialog, select TwinCAT Task With Image.
This allows you to add variables to the task PDO.

Provide a name for the task, for example Task 1. Configure Task 1 as a task with an image.
2 In the task list, select Task 1 and set its cycle ticks value to a value in milliseconds, such as 1

for 1 millisecond.

 Configure EtherCAT Network by Using TwinCAT 3

6-7

3 Record the cycle tick in milliseconds.

In the Model Configuration Parameters dialog box, use the cycle tick to calculate a value for the
Fixed-step size (fundamental sample time) box. To enable Simulink to calculate the sample
time, select Auto.

Configure EtherCAT Task Inputs

To configure the task inputs:

1 In TwinCAT 3, under Term 1, access the nodes Term 2 and AI Standard Channel 1.
2 Drag the Value node of AI Standard Channel 1 to the Task 1 inputs.
3 Configure the Term 1 inputs as variables.
4 Link the AI Standard Channel 1 variable to Term 2.

Adding a variable to the task you created requires that you:

1 Add an empty variable to the task with the same type as the PDO variable you want to add.
2 Link it to the PDO variable that you want to add to the task from that task entry using the

Linked to... button.

Adding any one variable from a specific slave device adds all PDO variables from that slave to the
task. For instance, with the EL3102 Analog Input module:

1 Left-click on your task Inputs entry and select Add New Item. The Insert Variable dialog
opens.

2 Select the data type. For the EL3102 the AD values is an INT in the list. That is a 2 byte signed
integer.

3 Change the name if needed, but this is not necessary.
4 Click on OK
5 A new dialog opens, click on Linked to....
6 In the new dialog, find the EL3102. Only variables with the data type selected above are visible.

Both INT and UINT appear. Select any one of the EL3102 variables. You may need to change with
check boxes are active under the Show Variables or Show Variable Types lists.

7 All of the EL3102 transmit (Input to master stack) variables are now included in the task just by
selecting one of them.

8 Repeat for one receive (Output to slave) variable for that slave.

Configure EtherCAT Task Outputs

To configure the task outputs:

1 In TwinCAT 3, under Term 1, access the nodes Term 3 and AO Outputs Channel 1.
2 Drag the Analog output node of AO Outputs Channel 1 to the Task 1 outputs.
3 Configure the Term 1 analog outputs as variables.
4 Link the Analog output variable to Term 3.

Configure EtherCAT Distributed Clocks

To configure the Term 3 distributed clock:

6 Model-Based EtherCAT Communications Support

6-8

1 In TwinCAT 3, under Term 3, access the DC tab.
2 Change the DC operation mode to DC Synchron.

There are two main steps to configure distributed clocks:

1 Select the synchronization mode, either Master shift or bus shift. TwinCAT refers to these with
TwinCAT centric names, not generic master stack names.

2 In the Solution Explorer, select I/O > Devices > Device 1 (EtherCAT)
3 In the dialog in the right side, select the EtherCAT tab. Select the Advanced Settings button.

On the left of the new dialog, select Distributed Clocks.
4 By default TwinCAT3 has Automatic DC Mode Selection chosen. Deselect that and choose DC

in use. Choose the mode you want.
5 Independent DC Time (Master Mode) causes the target machine clock to be adjusted to

synchronize with the first DC enabled EtherCAT slave device. This mode is also known as Master
Shift DC mode.

6 DC Time controlled by TwinCAT Time (Slave Mode) uses the target computer execution time
as the reference clock and to adjust the first DC enabled slave to match the target computer. This
is also known as Bus Shift mode.

For each DC enabled slave device, you need to ensure that it is configured correctly to participate in
DC synchronization. For each slave:

1 Select the slave in Solution Explorer.
2 In the dialog, select the DC tab if it is available.
3 In the Operation Mode drop down menu, there could be several different names given. For

instance DC Latch or DC Synchron are common and mean that the device synchronizes and
uses DC timing. SM synchron is a common listing to mean that IO is not DC synchronized, but
occurs on packet arrival (SM), not on DC time.

4 Click the Advanced Settings button.
5 Make sure the Enable checkbox is selected. There are additional settings that can be modified,

but these are generally advanced options.

Export and Save EtherCAT Configuration by Using TwinCAT 3
The EtherCAT Network Information (ENI) file represents the master node of an EtherCAT network. To
create the ENI file, scan and configure the network by using TwinCAT 3.

To export the ENI file from TwinCAT 3:

1 Under the Device 1 (EtherCAT) node, in the EtherCAT tab, execute the command to export the
configuration file.

2 In the file save dialog box, enter an XML file name, such as BeckhoffAIOconfig.xml.

Caution The ENI file is formatted as an XML file with the .xml file extension. Building the real-
time application produces an XML file with the same name as your model. To avoid a conflict, use
an ENI file name that is different from the name of your model.

3 When you close Microsoft Visual Studio TwinCAT the project file is saved.

 Configure EtherCAT Network by Using TwinCAT 3

6-9

To review or modify your configuration, open the project SLN file by using Microsoft Visual Studio. If
you modify the configuration, save both the XML and SLN files.

The next task is “Install EtherCAT Network for Execution” on page 6-11.

6 Model-Based EtherCAT Communications Support

6-10

Install EtherCAT Network for Execution
For TwinCAT 3 requirements, see “Hardware Setup Requirements for TwinCAT 3” on page 6-6. To
install the EtherCAT Network for execution by using the target computer as master node:

1 Run the Ethernet configuration tool. In the MATLAB Command Window, type:

speedgoat.configureEthernet

This tool lets you select either an IP address or reserve for EtherCAT each of the Ethernet ports
that is not the host-target link port. In the EtherCAT Init block, you need an Ethernet port
number. There, the number 1 refers to the first port that is reserved for EtherCAT using the
Ethernet configuration tool. For more information, see the Speedgoat documentation.

2 Connect your EtherCAT network to the target computer Ethernet port dedicated to EtherCAT.
Turn on the network.

The next task is “Configure EtherCAT Master Node Model” on page 6-12.

 Install EtherCAT Network for Execution

6-11

https://www.speedgoat.com/knowledge-center

Configure EtherCAT Master Node Model
Before configuring the model, complete the procedure in “Configure EtherCAT Network by Using
TwinCAT 3” on page 6-7.

To configure model slrt_ex_ethercat_beckhoff_aio for execution by using the target computer
as master node, complete the procedure in “Configure EtherCAT Init Block” on page 6-12.

Configure EtherCAT Init Block
Before you use the EtherCAT Init block, configure the EtherCAT network with TwinCAT 3.

Before you start this procedure, familiarize yourself with TwinCAT 3 and its documentation.

As part of the configuration process, create and save an EtherCAT Network Information (ENI) file.
See “Configure EtherCAT Network by Using TwinCAT 3” on page 6-7.

To include EtherCAT distributed clocks when PTP is enabled for the model, use EtherCAT bus shift
mode.

To configure the EtherCAT Init block of model slrt_ex_ethercat_beckhoff_aio:

1 Open model slrt_ex_ethercat_beckhoff_aio. In the MATLAB Command Window, type:

6 Model-Based EtherCAT Communications Support

6-12

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',...
'examples', 'slrt_ex_ethercat_beckhoff_aio'))

2 Double-click the EtherCAT Init block.
3 In the Config file (ENI) text box, browse to the EtherCAT Network Information (ENI) file that

you created when you configured the network (here, 'BeckhoffAIOconfig.xml'). You can
enter the file name with or without single quotes.

4 Use the default value 0 for parameter Device index.

If the model includes more than one EtherCAT network, enter a unique Device index for each
network. Enter the same value for all blocks in each network.

5 Enter the Ethernet Port Number for the EtherCAT port that you are connecting to your
EtherCAT network. See “Install EtherCAT Network for Execution” on page 6-11.

6 Take the default value Large model for parameter DC Tuning.

7 To update the data in the EtherCAT Init block and propagate it to the other EtherCAT blocks,
click Refresh Data.

8 Click OK.

Configure EtherCAT PDO Receive Blocks
Before beginning this procedure, you must have selected a valid ENI file in the EtherCAT Init block.

Before you start this procedure, familiarize yourself with TwinCAT 3 and its documentation.

To configure the EtherCAT PDO Receive blocks of model slrt_ex_ethercat_beckhoff_aio:

 Configure EtherCAT Master Node Model

6-13

1 Double-click the EtherCAT PDO Receive block labeled EtherCAT PDO Receive.
2 Set parameter Device Index to the value set in the EtherCAT Init block.
3 From the Signal Name list, select the variable, here Term 2 (EL3062).AI Standard

Channel 1.Value.
4 Observe the value in seconds of parameter Sample Time.

5 Click OK.

Execute steps 1–5 for the EtherCAT PDO Receive block labeled EtherCAT PDO Receive 1.

Configure EtherCAT PDO Transmit Blocks
Before beginning this procedure, you must have selected a valid ENI file in the EtherCAT Init block.

Before you start this procedure, familiarize yourself with TwinCAT 3 and its documentation.

To configure the EtherCAT PDO Transmit blocks of model slrt_ex_ethercat_beckhoff_aio:

1 Open model slrt_ex_ethercat_beckhoff_aio.
2 Double-click the EtherCAT PDO Transmit block labeled EtherCAT PDO Transmit.
3 Set parameter Device Index to the value set in the EtherCAT Init block.
4 Select a Signal Name variable, here Term 3 (EL4002).AO Outputs Channel 1.Analog

output.
5 Observe the value in seconds of parameter Sample Time.

6 Model-Based EtherCAT Communications Support

6-14

6 Click OK.

Execute steps 2–6 for the EtherCAT PDO Transmit block labeled EtherCAT PDO Transmit 1.

Update Async SDO Block Variables by Using Complete Access Mode
The EtherCAT Async SDO Upload block and EtherCAT Async SDO Download block have a parameter
that selects between single register access and complete access. This complete access mode provides
a convenient method to apply the information that you get from the ESI file, using the information to
programmatically populate the number of bytes in the data to read. This example shows approaches
to get that information by inspecting the ESI file.

• The EtherCAT Async SDO Download (read) block outputs a vector of byte data to be parsed with
an unpack block.

• The EtherCAT Async SDO Download (write) block receives a vector of byte data produced by a
pack block.

This example uses the Beckhoff EL3102 AI (Analog Input) device and shows how to obtain the
information from the ESI file to produce the correct configuration for the unpack and pack blocks
that are needed. The example uses index 0x8000, which has a set of different variables with varying
sizes. This one describes configuration options for an AI channel on the board.

This device has a set of subindexed variables on index 0x8000 (channel 1) and 0x8010 (channel 2)
where each of these has subindex values up to 0x18 (24 decimal) for AI configuration settings. Not all
subindex values in the range [0,0x18] are available. This information is available in the Beckhoff
documentation on their website. The documentation describes what each parameter does on the
device, but the documentation does not have exact bit location information. Views from the Beckhoff
web site for the EL3102 shows the information.

 Configure EtherCAT Master Node Model

6-15

6 Model-Based EtherCAT Communications Support

6-16

 Configure EtherCAT Master Node Model

6-17

There are 17 subindexes in the range. When counting the number of bytes, a BOOLEAN is 1 bit and
BIT3 is 3 bits with 16 and 32 bit ints as the usual sizes. This listing on the Beckhoff web site does not
give the exact bit layout. Bit packing into bytes is not always obvious. In this example, there are 11
bits mentioned, one 3 bit plus 8 boolean, which requires 2 bytes. The information on this data sheet
does not specify which bits are in each of the 2 bytes or specify the bit offsets.

Using either TwinCAT or ECEngineer to look at the CoE dictionary does not provide the exact bit
layout.

The ESI file contains a full bit level description of 0x8000 and its subindexes, showing exactly where
the single bit boolean variables are located in the data. The file also provides the full bit size of the
set. The ESI files for devices that TwinCAT recognizes are kept in a directory in the TwinCAT install
directory. With ECEngineer, the full set of ESI files it recognizes when shipped is not included, but is
processed into the tool by an install process. Each device manufacturer is required to define ESI file

6 Model-Based EtherCAT Communications Support

6-18

content for their devices. If necessary, ESI files can be obtained directly from the device
manufacturer.

The ESI file defines this as a data type, DT8000 for 0x8000 in the EL3102 device. The bit size is 160
bits, which is 20 bytes. This 20 byte value needs to be entered into either the EtherCAT Async SDO
Upload block or EtherCAT Async SDO Download block as the array size.

While there is a place in TwinCAT to check a box that says to enable complete access, that appears to
only be necessary for TwinCAT to use complete access. Using the Acontis code to get complete access
works even if the checkbox is not selected in TwinCAT before exporting the ENI file. No special
configuration is needed to use complete access CoE when generating an ENI file. This checkbox can
be ignored when creating an ENI file for Simulink Real-Time.

The next image is the EL31xx.xml ESI file. This one EtherCAT Slave Information file contains
descriptions of over 100 different devices from Beckhoff in the EL31xx group of A/D converters. In a
default install of TwinCAT 3.1, the file is found at C:\TwinCAT\3.1\Config\Io\EtherCAT
\El31xx.xml.

If you use a tool such as XML Notepad, you can look through the ESI file with a tree view where you
can open sections you’re interested in. Using XML Notepad, you find the devices that this ESI file
refers to at EtherCATInfo + Descriptions + Devices. Next, you need to open the device nodes and
look at the name in each. After finding the slave with name EL3102, navigate to the Device > Profile
> Dictionary > DataTypes entries where you find the types that are used with this device.

To find the datatype that describes the layout for the subindexes under 0x8000, you need to open the
datatypes and look for DT8000 (DataType 8000). This datatype is a bit level description of all
subindexes under 0x8000 as an example. The EL3102 has 39 different datatypes to search through.
The non-structure like datatypes are given first and then the structure like datatypes are at the end
numerically sorted by the number in DT<num>. For the EL3102, DT8000 is 6 before the end of the
list. Not all manufacturers will name their data types the same way that Beckhoff does here for their
devices.

The image shows that DT8000 has a bit size of 160 bits which is 160/8 = 20 bytes long. The subitems
each describe one subindex bit length and starting bit. The one slight exception is that subindex 0
always contains the largest subindex that this item contains. If read as a single CoE read request,
that value is read as a byte. If read as part of complete access, that first element is a uint8 followed
by a padding byte that is zero, that’s the same as the first entry being a 16 bit integer.

When you read through the subitems for DT8000, you see that not all subindex numbers are used.
When determining how to unpack the block of bytes that are returned with a complete access read,
there may be unused bytes to force alignment of 16 bit integers to 16 bit boundaries. A 32 bit int
appears to be able to be at any 16 bit boundary.

Data is packed using little endian byte ordering. The example above for the max subindex unpacks
the second byte as the high order 8 bits of the 16 bit integer, with the first byte being the low order 8
bits.

When unpacking bits for Boolean and short fixed point bitfields, bit 0 of a byte is the low order bit. In
the ESI file, the starting bit offset can be found by computing the remainder mod 8 of the bit offset.

 Configure EtherCAT Master Node Model

6-19

6 Model-Based EtherCAT Communications Support

6-20

 Configure EtherCAT Master Node Model

6-21

The next image shows that subitem 21, Filter settings, has a data type of it’s own, DT0801EN16
which is defined as an enum in another datatype entry. Those values define the different filter
bandwidths that the A/D can be set to use although the actual cutoff frequencies are given in the data
sheet, not here in the ESI file. Those values are also listed in the Beckhoff man page for the EL3102.

Block parameters:

• Index — Edit box for main index, hex value as 0x8000, or converted to decimal as 32768.

6 Model-Based EtherCAT Communications Support

6-22

• Access Mode — Complete Access
• Subindex — Edit box for first subindex to read or write. Only 0 or 1 are allowed for complete

access. If 1 is chosen, then the value of index 0 is not returned.
• Data Type — uint8 or uint16
• Dimension — Edit box for the number of bytes to read or write. Get the bit size from the ESI file

and divide by 8.
• Device index — EtherCAT network ID
• Device Name — Pull down list of terminal device names

Most of the EtherCAT documentation shows indexes in hex. For this complete set for index 0x8000,
the list of variable types in the pack or unpack block is:

{ ‘uint16’, ‘uint8’, ‘uint8’, ‘int16’, ‘int32’, ‘int16’, ‘int16’, ‘uint16’, ‘int16’, ‘int16’ }

To unpack the bits from both of the uint8 entries an additional bit unpack or bit pack block is needed
for each one.

The unpack block also needs a cell array listing the vector dimension of each. In this case, this vector
works:

{[1], [1], [1], [1], [1], [1], [1], [1], [1], [1]}

Configure EtherCAT Model Configuration Parameters
Before beginning this procedure, you must have selected a valid ENI file in the EtherCAT Init block.
For more information, see “Fixed-Step Size Derivation” on page 6-28.

To configure the configuration parameters for model slrt_ex_ethercat_beckhoff_aio:

1 Open model slrt_ex_ethercat_beckhoff_aio.
2 Calculate the greatest common divisor (GCD) of the Sample Time values for the EtherCAT tasks

and for all source blocks in the model. In this case, the GCD is 0.010.
3 In the Simulink Editor, on the Real-Time tab, from the Prepare section, click Hardware

Settings. Select Configuration Parameters > Solver.
4 Set the Type parameter to Fixed-step and Fixed-step size (fundamental sample time) to

one of the following:

• An integral divisor of the GCD value, in seconds.
• auto, if all other source blocks in the model have defined sample times.

In this case, set the parameter to 0.010.

 Configure EtherCAT Master Node Model

6-23

5 Click OK.

The next tasks are building, downloading, and executing the EtherCAT master node model.

6 Model-Based EtherCAT Communications Support

6-24

EtherCAT Distributed Clock Algorithm
In this section...
“Master Shift Mode” on page 6-25
“Bus Shift Mode” on page 6-26
“Limitations” on page 6-27

An EtherCAT network consists of a master node (the target computer) connected to an arbitrary
number of slave nodes (devices). Each node contains a clock that controls its internal operation.
When you enable distributed clocks in the ENI file by using the configurator program, EtherCAT
designates one clock in the network as the reference clock. The EtherCAT distributed clock (DC)
algorithm then synchronizes the operation of multiple network nodes to the reference clock.

The DC algorithm operates in two phases. In phase 1, the algorithm aligns the clocks of DC-enabled
network nodes other than the master node with the clock of the first DC-enabled slave node. In phase
2, the algorithm aligns the remaining unaligned clock with the reference clock.

Master Shift Mode
In master shift mode, the reference clock is the clock of the first DC-enabled slave in the network.

In phase 1, the algorithm shifts the sample time of the network nodes to align with the clock of the
first slave node. In that process, the EtherCAT Init block output value NetworkToSlaveClkDiff
decreases to near zero.

In phase 2, the algorithm shifts the sample time of the master stack running on the target computer
to align with the first slave node clock. In that process, the EtherCAT Init block output value
MasterToNetworkClkDiff decreases to near zero. If there are no DC enabled devices, both values
are zero.

 EtherCAT Distributed Clock Algorithm

6-25

Bus Shift Mode
In bus shift mode, the reference clock is the clock of the master stack running on the target
computer.

In phase 1, the algorithm shifts the sample time of the DC-enabled network nodes to align with the
clock of the first DC-enabled slave node. In that process, the value NetworkToSlaveClkDiff
decreases to near zero.

6 Model-Based EtherCAT Communications Support

6-26

In phase 2, the algorithm shifts the sample time of the first DC-enabled slave node to align with the
clock of the master stack. In that process, the value MasterToNetworkClkDiff decreases to near
zero. The algorithm shifts the sample time of the other network nodes to stay aligned with the first
slave node clock. In that process, the value of NetworkToSlaveClkDiff can first increase, then
decrease to near zero.

Limitations
To include EtherCAT distributed clocks when PTP is enabled for the model, use EtherCAT bus shift
mode.

See Also
EtherCAT Init

More About
• “EtherCAT Init Block DC Error Values” on page 6-32

 EtherCAT Distributed Clock Algorithm

6-27

Fixed-Step Size Derivation
To configure the sample time for an EtherCAT model, set the Fixed-step size (fundamental sample
time) for the entire model in the model Configuration Parameters Solver pane. You can also specify
the sample times for key blocks. Sample times for blocks are integer multiples or divisors of the
fundamental sample time.

During execution, the fixed-step size determines the cycle tick of the EtherCAT tasks and the sample
times of the other source blocks in the model. Subject to the fixed step size value, the block type
determines the sample time groups: a comparatively long sample time for the synchronous SDO
blocks and another, shorter sample time for the rest of the blocks. As a best practice, set the sample
time for the synchronous SDO blocks to a value at least three times of that for the PDO blocks.

Using an EtherCAT network configurator, specify the EtherCAT task cycle tick based on the
requirements of the EtherCAT network. Specify the fixed-step size so that the GCD of the task cycle
tick and the block sample times is an integer multiple of the fixed-step size.

For example, assume that the fastest EtherCAT task rate is 50 Hz for a corresponding cycle tick of 20
ms. The model block sample times, scaled to ms, are [20, 30, 40 50]. The FSS is:

FSS = min(gcd(20, [20, 30, 40, 50]))

FSS =

 10

The software sends all PDO data updates at the fastest EtherCAT task cycle tick (20 ms), even if you
created multiple EtherCAT tasks running at different cycle ticks. The PDO Read and Write blocks run
at the cycle tick for the tasks containing the given EtherCAT variable.

If you know that the other source blocks have defined sample times, you can set Fixed-step size to
auto. If one or more block sample times are incompatible with the fixed sample time, there is an
error during system update. If you do not encounter an error, in the Simulink Editor, on the Debug
tab, from Information Overlays, click Sample Time Colors to see the block sample times.

6 Model-Based EtherCAT Communications Support

6-28

EtherCAT Protocol Mapping
EtherCAT supports several overlay protocols. Simulink Real-Time supports some of the protocols
directly, provides others with minimal support, and does not support some other protocols.

Overlay Protocol Protocol Description Support Type Action
CANopen over
EtherCAT (CoE)

Implements CANopen
functionality by using
EtherCAT

Direct Model CoE by using
SDO upload and
download blocks

Ethernet over EtherCAT
(EoE)

Provides EtherCAT
wrapper around
Ethernet packets.
EtherCAT acts as
network switch

Minimal Send wrapped EoE
messages between
separate slave devices

File Access over
EtherCAT (FoE)

Updates the EtherCAT
board ROM

Not supported Update the EtherCAT
slave ROM with
TwinCAT 3.

Functional Safety over
EtherCAT (FSoE)

Sends asynchronous
safety messages over
the network

Not supported Not applicable

Servcos over EtherCAT
(SoE)

Wraps vendor-specific
servo commands in a
common protocol

Direct SoE by using SSC up
and down

CoE and SoE are two addressing schemes for configuration parameters in slave devices. SoE is used
for some motor drives. For more information, see the device documentation.

 EtherCAT Protocol Mapping

6-29

EtherCAT Configurator Component Mapping
This table summarizes the mapping between third-party EtherCAT configurator components and
Simulink Real-Time blocks and block attributes. For more information, see the TwinCAT 3 or Acontis
EC-Engineer documentation.

EtherCAT Configurator Component Simulink Real-Time
ComponentTwinCAT Acontis EC-Engineer

Cycle ticks (task step) Cycle time Sample time
Scalars and vectors Dimension Dimension
BitSize Byte size of type Type Size
Data Type, BitSize Data type Signal Type
EtherCAT device variable names
linked to variables in the task
PDO

All PDO variable names
included in default task as
defined in the ENI file

EtherCAT PDO signal names for
the Receive and Transmit PDO
blocks

See Also
EtherCAT PDO Receive | EtherCAT PDO Transmit

More About
• “EtherCAT Data Types” on page 6-31

6 Model-Based EtherCAT Communications Support

6-30

EtherCAT Data Types
The Simulink Real-Time EtherCAT blocks directly support the following EtherCAT data types. The
software maps other EtherCAT data types to a byte array. The byte array requires explicit data type
conversion by using Byte Pack, Byte Unpack, or S-function blocks.

EtherCAT Data Type Data Type Size (bits) Converted Simulink Data
Type

bit 1 uint8
bit8 8 uint8
bitarr 8 (bit array) uint8
bitarr16 16 (bit array) uint16
bitarr32 32 (bit array) uint32
BOOL 1 Boolean
int8 8 int8
int16 16 int16
int32 32 int32
int64 64 int64
uint8 8 uint8
uint16 16 uint16
uint32 32 uint32

 EtherCAT Data Types

6-31

EtherCAT Init Block DC Error Values
The Simulink Real-Time EtherCAT Init block returns the following EtherCAT distributed clock (DC)
error values related to the master shift controller and the bus shift controller.

Error Value Description
1 (0x1) Initialization function not called or not successful
2 (0x2) Controller error — synchronization out of limit

Master shift: error 2, Maximum controller error exceeded

Bus shift: error 2, Maximum controller error exceeded
3 (0x3) Not enough memory
4 (0x4) Hardware layer — (BSP) invalid
5 (0x5) Hardware layer — error modifying the timer
6 (0x6) Hardware layer — timer is not running
7 (0x7) Hardware layer — function is called on wrong CPU
8 (0x8) Invalid DC synchronization period length
9 (0x9) Error DCM Controller SetVal is too small
10 (0xA) Error DCM Controller — Drift between local timer and ref clock too high
11 (0xB) ERROR: Error DCM Controller - Bus cycle time (dwBusCycleTimeUsec)

doesn't match real cycle
27 (0x1B) DC controller not ready

Master shift: error 27, DC controller not ready

Bus shift: error 27, DC controller not ready
28 (0x1C) DC controller busy

6 Model-Based EtherCAT Communications Support

6-32

EtherCAT Error Codes
The Error output for the EtherCAT blocks returns an EtherCAT error code. These blocks include:

• EtherCAT Sync SSC/SoE Upload
• EtherCAT Sync SSC/SoE Download
• EtherCAT Async SSC/SoE Upload
• EtherCAT Async SSC/SoE Download
• EtherCAT Sync SDO Upload
• EtherCAT Sync SDO Download
• EtherCAT Async SDO Upload
• EtherCAT Async SDO Download
• EtherCAT Set State

These EtherCAT error codes are prepended onto the small number error codes. These prepended
codes must not appear without the small number added. These prepended codes appear in the upper
16 bits of the unsigned 32-bit error code. You can masked the codes to display the small number error
code. In the table, the Decimal column shows the base 10 value after the upper 16 bits are masked.

Prepended Codes Hexadecimal Error Text
EC_E_NOERROR 0x00000000 No Error
EC_E_ERROR 0x98110000 Unspecific Error
EMRAS_E_ERROR 0x98110180 Unspecific RAS Error

The RAS (Remote Access Server) is not yet
implemented

DCM_E_ERROR 0x981201C0 Unspecific DCM Error

This class of error comes from the master shift
DC driver

EC_TEXTBASE 0x0200 Unknown Text (Base)
EC_ALSTATEBASE 0x0300 AL Status No Error

These codes are the small-number EtherCAT error codes.

Hexadecimal Decimal Error Text
EC_E_ERROR+0x01 1 ERROR: Feature not supported
EC_E_ERROR+0x02 2 ERROR: Invalid index
EC_E_ERROR+0x03 3 ERROR: Invalid offset
EC_E_ERROR+0x04 4 ERROR: Cancel
EC_E_ERROR+0x05 5 ERROR: Invalid size
EC_E_ERROR+0x06 6 ERROR: Invalid data
EC_E_ERROR+0x07 7 ERROR: Not ready
EC_E_ERROR+0x08 8 ERROR: Busy

 EtherCAT Error Codes

6-33

Hexadecimal Decimal Error Text
EC_E_ERROR+0x09 9 ERROR: Cannot queue acyclic EtherCAT command

(MasterConfig.dwMaxQueuedEthFrames)
EC_E_ERROR+0x0A 10 ERROR: No memory left
EC_E_ERROR+0x0B 11 ERROR: Invalid parameter
EC_E_ERROR+0x0C 12 ERROR: Not found
EC_E_ERROR+0x0D 13 ERROR: Duplicate
EC_E_ERROR+0x0E 14 ERROR: Invalid state
EC_E_ERROR+0x0F 15 ERROR: Cannot add slave to timer list
EC_E_ERROR+0x10 16 ERROR: Time-out
EC_E_ERROR+0x11 17 ERROR: Open failed
EC_E_ERROR+0x12 18 ERROR: Send failed
EC_E_ERROR+0x13 19 ERROR: Insert mailbox error
EC_E_ERROR+0x14 20 ERROR: Invalid mailbox command
EC_E_ERROR+0x15 21 ERROR: Unknown mailbox protocol command
EC_E_ERROR+0x16 22 ERROR: Access denied
EC_E_ERROR+0x17 23 ERROR: Identification failed
EC_E_ERROR+0x1A 26 ERROR: Invalid product key
EC_E_ERROR+0x1B 27 ERROR: Wrong format of master XML file
EC_E_ERROR+0x1C 28 ERROR: Feature disabled
EC_E_ERROR+0x1D 29 ERROR: Shadow memory requested in wrong mode
EC_E_ERROR+0x1E 30 Bus configuration mismatch
EC_E_ERROR+0x1F 31 ERROR: Error in reading config file
EC_E_ERROR+0x20 32 ERROR: Configuration doesn't support SAFEOP and

OP requested state
EC_E_ERROR+0x21 33 ERROR: Cyclic commands are missing
EC_E_ERROR+0x22 34 ERROR: AL_STATUS register read missing in XML

file for at least one state
EC_E_ERROR+0x23 35 ERROR: Fatal internal McSm
EC_E_ERROR+0x24 36 ERROR: Slave error
EC_E_ERROR+0x25 37 ERROR: Frame lost, IDX mismatch
EC_E_ERROR+0x26 38 ERROR: At least one EtherCAT command is missing

in the received frame
EC_E_ERROR+0x28 40 ERROR: IOCTL

EC_IOCTL_DC_LATCH_REQ_LTIMVALS not possible
in DC Latching auto read mode

EC_E_ERROR+0x29 41 ERROR: Auto increment address - increment
mismatch (slave missing)

EC_E_ERROR+0x2A 42 ERROR: Slave in invalid state, e.g. not in OP (API not
callable in this state

6 Model-Based EtherCAT Communications Support

6-34

Hexadecimal Decimal Error Text
EC_E_ERROR+0x2B 43 ERROR: Station address lost or slave missing - FPRD

to AL_STATUS failed
EC_E_ERROR+0x2C 44 ERROR: Too many cyclic commands in XML

configuration file. (Check
EC_T_MASTER_CONFIG.dwMaxQueuedEthFrames

EC_E_ERROR+0x2D 45 ERROR: Ethernet link cable disconnected
EC_E_ERROR+0x2E 46 ERROR: Master core not accessible
EC_E_ERROR+0x2F 47 ERROR CoE: Mailbox send: working counter
EC_E_ERROR+0x31 49 ERROR: No mailbox support
EC_E_ERROR+0x32 50 ERROR CoE: Protocol not supported
EC_E_ERROR+0x33 51 ERROR EoE: Protocol not supported
EC_E_ERROR+0x34 52 ERROR FoE: Protocol not supported
EC_E_ERROR+0x35 53 ERROR SoE: Protocol not supported
EC_E_ERROR+0x36 54 ERROR VoE: Protocol not supported

CoE SDO command errors can be returned by the 4 SDO/CoE blocks

EC_E_ERROR+0x40 64 ERROR SDO: Toggle bit not alternated
EC_E_ERROR+0x41 65 ERROR SDO: SDO protocol time-out
EC_E_ERROR+0x42 66 ERROR SDO: Client/server command specifier not

valid or unknown
EC_E_ERROR+0x43 67 ERROR SDO: Invalid block size (block mode only
EC_E_ERROR+0x44 68 ERROR SDO: Invalid sequence number (block mode

only
EC_E_ERROR+0x45 69 ERROR SDO: CRC error (block mode only
EC_E_ERROR+0x46 70 ERROR SDO: Out of memory
EC_E_ERROR+0x47 71 ERROR SDO: Unsupported access to an object
EC_E_ERROR+0x48 72 ERROR SDO: Attempt to read a write only object
EC_E_ERROR+0x49 73 ERROR SDO: Attempt to write a read only object
EC_E_ERROR+0x4A 74 ERROR SDO: Object does not exist in the object

dictionary
EC_E_ERROR+0x4B 75 ERROR SDO: Object cannot be mapped to the PDO
EC_E_ERROR+0x4C 76 ERROR SDO: Number and length of objects to be

mapped exceed PDO length
EC_E_ERROR+0x4D 77 ERROR SDO: General parameter incompatibility
EC_E_ERROR+0x4E 78 ERROR SDO: General internal incompatibility in the

device.
EC_E_ERROR+0x4F 79 ERROR SDO: Access failed due to an hardware error

 EtherCAT Error Codes

6-35

Hexadecimal Decimal Error Text
EC_E_ERROR+0x50 80 ERROR SDO: Data type does not match, length of

service parameter does not match
EC_E_ERROR+0x51 81 ERROR SDO: Data type does not match, service

parameter too long
EC_E_ERROR+0x52 82 ERROR SDO: Data type does not match, service

parameter too short
EC_E_ERROR+0x53 83 ERROR SDO: Sub-index does not exist
EC_E_ERROR+0x54 84 ERROR SDO: Write access - Parameter value out of

range
EC_E_ERROR+0x55 85 ERROR SDO: Write access - Parameter value out of

high limit
EC_E_ERROR+0x56 86 ERROR SDO: Write access - Parameter value out of

low limit
EC_E_ERROR+0x57 87 ERROR SDO: Maximum value is less than minimum

value
EC_E_ERROR+0x58 88 ERROR SDO: General error
EC_E_ERROR+0x59 89 ERROR SDO: Unable to transfer or store data to the

application
EC_E_ERROR+0x5A 90 ERROR SDO: Unable to transfer or store data to the

application because of local control
EC_E_ERROR+0x5B 91 ERROR SDO: Unable to transfer or store data to the

application because of the present device state
EC_E_ERROR+0x5C 92 ERROR SDO: Dynamic generation of object dictionary

failed or missing object dictionary
EC_E_ERROR+0x5D 93 ERROR SDO: Unknown code

FoE commands (not reachable with SLRT implementation)

EC_E_ERROR+0x60 96 ERROR FoE: Vendor specific FoE error
EC_E_ERROR+0x61 97 ERROR FoE: Not found
EC_E_ERROR+0x62 98 ERROR FoE: Access denied
EC_E_ERROR+0x63 99 ERROR FoE: Disk full
EC_E_ERROR+0x64 100 ERROR FoE: Illegal
EC_E_ERROR+0x65 101 ERROR FoE: Wrong packet number
EC_E_ERROR+0x66 102 ERROR FoE: Already exists
EC_E_ERROR+0x67 103 ERROR FoE: User missing
EC_E_ERROR+0x68 104 ERROR FoE: Bootstrap only
EC_E_ERROR+0x69 105 ERROR FoE: Not bootstrap
EC_E_ERROR+0x6A 106 ERROR FoE: No rights

6 Model-Based EtherCAT Communications Support

6-36

Hexadecimal Decimal Error Text
EC_E_ERROR+0x6B 107 ERROR FoE: Program error

End of FoE specific errors

General errors again

EC_E_ERROR+0x70 112 ERROR: Master configuration not found
EC_E_ERROR+0x71 113 ERROR: Command error while EEPROM upload
EC_E_ERROR+0x72 114 ERROR: Command error while EEPROM download
EC_E_ERROR+0x73 115 ERROR: Cyclic command wrong size (too long)
EC_E_ERROR+0x74 116 ERROR: Invalid input offset in cyc cmd, please check

InputOffs
EC_E_ERROR+0x75 117 ERROR: Invalid output offset in cyc cmd, please

check OutputOffs
EC_E_ERROR+0x76 118 ERROR: Port Close failed
EC_E_ERROR+0x77 119 ERROR: Port Open failed

SoE command errors, can be returned by the 4 SSC/SoE blocks

EC_E_ERROR+0x78 120 ERROR SoE: Invalid access to element 0
EC_E_ERROR+0x79 121 ERROR SoE: Does not exist
EC_E_ERROR+0x7a 122 ERROR SoE: Invalid access to element 1
EC_E_ERROR+0x7b 123 ERROR SoE: Name does not exist
EC_E_ERROR+0x7c 124 ERROR SoE: Name undersize in transmission
EC_E_ERROR+0x7d 125 ERROR SoE: Name oversize in transmission
EC_E_ERROR+0x7e 126 ERROR SoE: Name unchangeable
EC_E_ERROR+0x7f 127 ERROR SoE: Name currently write-protected
EC_E_ERROR+0x80 128 ERROR SoE: Attribute undersize in transmission
EC_E_ERROR+0x81 129 ERROR SoE: Attribute oversize in transmission
EC_E_ERROR+0x82 130 ERROR SoE: Attribute unchangeable
EC_E_ERROR+0x83 131 ERROR SoE: Attribute currently write-protected
EC_E_ERROR+0x84 132 ERROR SoE: Unit does not exist
EC_E_ERROR+0x85 133 ERROR SoE: Unit undersize in transmission
EC_E_ERROR+0x86 134 ERROR SoE: Unit oversize in transmission

 EtherCAT Error Codes

6-37

Hexadecimal Decimal Error Text
EC_E_ERROR+0x87 135 ERROR SoE: Unit unchangeable
EC_E_ERROR+0x88 136 ERROR SoE: Unit currently write-protected
EC_E_ERROR+0x89 137 ERROR SoE: Minimum input value does not exist
EC_E_ERROR+0x8a 138 ERROR SoE: Minimum input value undersize in

transmission
EC_E_ERROR+0x8b 139 ERROR SoE: Minimum input value oversize in

transmission
EC_E_ERROR+0x8c 140 ERROR SoE: Minimum input value unchangeable
EC_E_ERROR+0x8d 141 ERROR SoE: Minimum input value currently write-

protected
EC_E_ERROR+0x8e 142 ERROR SoE: Maximum input value does not exist
EC_E_ERROR+0x8f 143 ERROR SoE: Maximum input value undersize in

transmission
EC_E_ERROR+0x90 144 ERROR SoE: Maximum input value oversize in

transmission
EC_E_ERROR+0x91 145 ERROR SoE: Maximum input value unchangeable
EC_E_ERROR+0x92 146 ERROR SoE: Maximum input value currently write-

protected
EC_E_ERROR+0x93 147 ERROR SoE: Data item does not exist
EC_E_ERROR+0x94 148 ERROR SoE: Data item undersize in transmission
EC_E_ERROR+0x95 149 ERROR SoE: Data item oversize in transmission
EC_E_ERROR+0x96 150 ERROR SoE: Data item unchangeable
EC_E_ERROR+0x97 151 ERROR SoE: Data item currently write-protected
EC_E_ERROR+0x98 152 ERROR SoE: Data item less than minimum input

value limit
EC_E_ERROR+0x99 153 ERROR SoE: Data item exceeds maximum input value

limit
EC_E_ERROR+0x9a 154 ERROR SoE: Data item is incorrect
EC_E_ERROR+0x9b 155 ERROR SoE: Data item is protected by password
EC_E_ERROR+0x9c 156 ERROR SoE: Data item temporary unchangeable (in

AT or MDT)
EC_E_ERROR+0x9d 157 ERROR SoE: Invalid indirect
EC_E_ERROR+0x9e 158 ERROR SoE: Data item temporary unchangeable

(parameter or opmode...)
EC_E_ERROR+0x9f 159 ERROR SoE: Command already active
EC_E_ERROR+0x100 256 ERROR SoE: Command not interruptible
EC_E_ERROR+0x101 257 ERROR SoE: Command not available (in this phase)
EC_E_ERROR+0x102 258 ERROR SoE: Command not available (invalid

parameter...)

6 Model-Based EtherCAT Communications Support

6-38

Hexadecimal Decimal Error Text
EC_E_ERROR+0x103 259 ERROR SoE: Response drive number not identical

with the requested drive number
EC_E_ERROR+0x104 260 ERROR SoE: Response IDN not identical with the

requested IDN
EC_E_ERROR+0x105 261 ERROR SoE: At least one fragment lost
EC_E_ERROR+0x106 262 ERROR SoE: RX buffer is full (ecat call with to small

data-buffer)
EC_E_ERROR+0x107 263 ERROR SoE: No data state.
EC_E_ERROR+0x108 264 ERROR SoE: No default value.
EC_E_ERROR+0x109 265 ERROR SoE: Default value transmission too long.
EC_E_ERROR+0x10a 266 ERROR SoE: Default value cannot be changed, read

only.
EC_E_ERROR+0x10b 267 ERROR SoE: Invalid drive number.
EC_E_ERROR+0x10c 268 ERROR SoE: General error
EC_E_ERROR+0x10d 269 ERROR SoE: No element addressed.

End of SoE specific error codes

EC_E_ERROR+0x10e 270 Command not executed. Slave is not present on Bus
EC_E_ERROR+0x10f 271 ERROR FoE: Protocol not supported in boot strap
EC_E_ERROR+0x110 272 ERROR: command error while EEPROM reload
EC_E_ERROR+0x111 273 ERROR: command error while Reset Slave Controller
EC_E_ERROR+0x11E 286 Bus configuration not detected, Topology changed
EC_E_ERROR+0x11F 287 ERROR EoE: Mailbox receive: working counter
EC_E_ERROR+0x120 288 ERROR FoE: Mailbox receive: working counter
EC_E_ERROR+0x121 289 ERROR SoE: mailbox receive: working counter
EC_E_ERROR+0x122 290 ERROR AoE: Mailbox receive: working counter
EC_E_ERROR+0x123 291 ERROR VoE: Mailbox receive: working counter
EC_E_ERROR+0x124 292 ERROR: EEPROM assignment failed
EC_E_ERROR+0x125 293 ERROR: Error mailbox received
EC_E_ERROR+0x126 294 ERROR: Redundancy line break
EC_E_ERROR+0x127 295 ERROR: Invalid EtherCAT cmd in cyclic frame with

redundancy
EC_E_ERROR+0x128 296 ERROR: <PreviousPort>-tag is missing!
EC_E_ERROR+0x129 297 ERROR: DC is enabled and DC cyclic commands are

missing (e.g. access to 0x900)!
EC_E_ERROR+0x130 304 ERROR: DL Status Interrupt because of changed

Topology

 EtherCAT Error Codes

6-39

Hexadecimal Decimal Error Text
EC_E_ERROR+0x131 305 ERROR: The Pass Through Server is not running!
EC_E_ERROR+0x132 306 ERROR: The ADS adapter (Pass Through Server) is

running
EC_E_ERROR+0x133 307 ERROR: Could not start the Pass Through Server
EC_E_ERROR+0x134 308 ERROR: The Pass Through Server could not bind the

IP address with a socket
EC_E_ERROR+0x135 309 The Pass Through Server is running but not enabled
EC_E_ERROR+0x136 310 ERROR: This LinkLayer mode is not supported by the

Pass Through Server
EC_E_ERROR+0x137 311 ERROR VoE: No VoE mailbox received
EC_E_ERROR+0x138 312 ERROR: SYNC out unit of reference clock is disabled
EC_E_ERROR+0x139 313 ERROR: Reference clock not found
EC_E_ERROR+0x13B 315 ERROR: Mailbox command working counter error

AoE is not supported by any SLRT blocks. These should never be returned.

EC_E_ERROR+0x13C 316 ERROR AoE: Protocol not supported
EC_E_ERROR+0x13D 317 ERROR AoE: Invalid AoE response received
EC_E_ERROR+0x13E 318 ERROR AoE: Common AoE device error
EC_E_ERROR+0x13F 319 ERROR AoE: Service is not supported by server
EC_E_ERROR+0x140 320 ERROR AoE: Invalid index group
EC_E_ERROR+0x141 321 ERROR AoE: Invalid index offset
EC_E_ERROR+0x142 322 ERROR AoE: Reading/writing not permitted
EC_E_ERROR+0x143 323 ERROR AoE: Parameter size not correct
EC_E_ERROR+0x144 324 ERROR AoE: Invalid parameter value(s)
EC_E_ERROR+0x145 325 ERROR AoE: Device is not in a ready state
EC_E_ERROR+0x146 326 ERROR AoE: Device is busy
EC_E_ERROR+0x147 327 ERROR AoE: Invalid context
EC_E_ERROR+0x148 328 ERROR AoE: Out of memory
EC_E_ERROR+0x149 329 ERROR AoE: Invalid parameter value(s)
EC_E_ERROR+0x14A 330 ERROR AoE: Not found
EC_E_ERROR+0x14B 331 ERROR AoE: Syntax error in command or file
EC_E_ERROR+0x14C 332 ERROR AoE: Objects do not match
EC_E_ERROR+0x14D 333 ERROR AoE: Object already exists
EC_E_ERROR+0x14E 334 ERROR AoE: Symbol not found
EC_E_ERROR+0x14F 335 ERROR AoE: Symbol version invalid
EC_E_ERROR+0x150 336 ERROR AoE: Server is in invalid state

6 Model-Based EtherCAT Communications Support

6-40

Hexadecimal Decimal Error Text
EC_E_ERROR+0x151 337 ERROR AoE: AdsTransMode not supported
EC_E_ERROR+0x152 338 ERROR AoE: Notification handle is invalid
EC_E_ERROR+0x153 339 ERROR AoE: Notification client not registered
EC_E_ERROR+0x154 340 ERROR AoE: No more notification handles
EC_E_ERROR+0x155 341 ERROR AoE: Size for watch to big
EC_E_ERROR+0x156 342 ERROR AoE: Device not initialized
EC_E_ERROR+0x157 343 ERROR AoE: Device has a timeout
EC_E_ERROR+0x158 344 ERROR AoE: Query interface failed
EC_E_ERROR+0x159 345 ERROR AoE: Wrong interface required
EC_E_ERROR+0x15A 346 ERROR AoE: Class ID is invalid
EC_E_ERROR+0x15B 347 ERROR AoE: Object ID is invalid
EC_E_ERROR+0x15C 348 ERROR AoE: Request is pending
EC_E_ERROR+0x15D 349 ERROR AoE: Request is aborted
EC_E_ERROR+0x15E 350 ERROR AoE: Signal warning
EC_E_ERROR+0x15F 351 ERROR AoE: Invalid array index
EC_E_ERROR+0x160 352 ERROR AoE: Symbol not active -> release handle and

try again
EC_E_ERROR+0x161 353 ERROR AoE: Access denied
EC_E_ERROR+0x162 354 ERROR AoE: Internal error
EC_E_ERROR+0x163 355 ERROR AoE: Target port not found
EC_E_ERROR+0x164 356 ERROR AoE: Target machine not found
EC_E_ERROR+0x165 357 ERROR AoE: Unknown command ID
EC_E_ERROR+0x166 358 ERROR AoE: Port not connected
EC_E_ERROR+0x167 359 ERROR AoE: Invalid AMS length
EC_E_ERROR+0x168 360 ERROR AoE: invalid AMS Net ID
EC_E_ERROR+0x169 361 ERROR AoE: Port disabled
EC_E_ERROR+0x16A 362 ERROR AoE: Port already connected
EC_E_ERROR+0x16B 363 ERROR AoE: Invalid AMS port!
EC_E_ERROR+0x16C 364 ERROR AoE: No memory!
EC_E_ERROR+0x16D 365 ERROR AoE: Vendor specific AoE device error
EC_E_ERROR+0x16E 366 ERROR: Invalid AoE NetID!

End of AoE specific errors

 EtherCAT Error Codes

6-41

Hexadecimal Decimal Error Text

Generic errors that indicate configuration problems, should never happen.

EC_E_ERROR+0x16F 367 ERROR: Maximum number of bus slave has been

exceeded
EC_E_ERROR+0x170 368 ERROR Mailbox: Syntax of 6 octet Mailbox header is

wrong!
EC_E_ERROR+0x171 369 ERROR Mailbox: The Mailbox protocol is not

supported
EC_E_ERROR+0x172 370 ERROR Mailbox: Field contains wrong value
EC_E_ERROR+0x173 371 ERROR Mailbox: The service in the Mailbox protocol

is not supported
EC_E_ERROR+0x174 372 ERROR Mailbox: The mailbox protocol header of the

mailbox protocol is wrong
EC_E_ERROR+0x175 373 ERROR Mailbox: Length of received mailbox data is

too short
EC_E_ERROR+0x176 374 ERROR Mailbox: Mailbox protocol can not be

processed because of limited resources
EC_E_ERROR+0x177 375 ERROR Mailbox: The length of data is inconsistent
EC_E_ERROR+0x178 376 ERROR: Slaves with DC configured are present on

bus before the reference clock
EC_E_ERROR+0x179 377 ERROR: Data type conversion failed
EC_E_ERROR+0x17A 378 ERROR FoE: File is bigger than max file size
EC_E_ERROR+0x17B 379 ERROR: Line crossed
EC_E_ERROR+0x17C 380 ERROR: Line crossed at slave \%s\", EtherCAT auto-

increment address=%d, station address=%d. Error at
port %d."

EC_E_ERROR+0x17D 381 ERROR: Socket disconnected

See Also
EtherCAT Sync SSC/SoE Upload | EtherCAT Sync SSC/SoE Download | EtherCAT Async SSC/SoE
Upload | EtherCAT Async SSC/SoE Download | EtherCAT Sync SDO Upload | EtherCAT Sync SDO
Download | EtherCAT Async SDO Upload | EtherCAT Async SDO Download | EtherCAT Set State

6 Model-Based EtherCAT Communications Support

6-42

EtherCAT Blocks

7

EtherCAT Init
Initialize EtherCAT Master node with data in the EtherCAT Network Information (ENI) file
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Init block initializes the EtherCAT master stack. The block specifies the Ethernet
interface cards in the network.

Before you use this block, create and save an EtherCAT Network Information (ENI) file. You export
the ENI file from the Beckhoff TwinCAT or the acontis EC-Engineer. See “Configure EtherCAT
Network by Using TwinCAT 3” on page 6-7.

To find the ENI file, click Browse. To read the ENI file and store the data in the EtherCAT Init block,
click Refresh Data.

The Simulink Real-Time software supports multiple EtherCAT networks. To use multiple networks:

• Use a different Ethernet card interface for each EtherCAT network.
• In the model, use one EtherCAT Init block for each network.

To include EtherCAT distributed clocks when PTP is enabled for the model, use EtherCAT bus shift
mode.

Ports
Output

Status — Status information about the EtherCAT network
vector

The Status vector contains these values: ErrVal, MasterState, DCErrVal,
MasterToNetworkClkDiff, DCInitState, and NetworkToSlaveClkDiff.

• ErrVal — Error status:

• No error: 0
• Error: Value less than 0.

Because ErrVal shows the latest error status, the propagation of errors can hide the original
error. To find the original error, add an EtherCAT Get Notifications block and use the
slrealtime.EtherCAT.filterNotifications command to print the status codes that the
EtherCAT stack transmits.

• MasterState — Operating state of the EtherCAT network.

7 EtherCAT Blocks

7-2

State Value Description
INIT 1 Initialization — The system finds terminal devices and

initializes the communication controller.
PREOP 2 Preoperational — The system uses the communication

controller to exchange system-specific initialization data. In
this state, the network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The supervisor sends input data to the terminal
device. The terminal device output remains in a safe state.

OP 8 Operational — The network is in full operation. The supervisor
sends input data to the terminal device. The terminal device
responds with output data.

• DCErrVal — DC error status for the master shift controller:

• No DC Error for master shift controller: 0
• DC error for master shift controller: Value from “EtherCAT Init Block DC Error Values” on page

6-32.

When you select master shift controller mode, the value 0 indicates successful clock distribution.
The DCErrVal does not apply when the distributed clock is disabled.

• MasterToNetworkClkDiff — Time difference, in nanoseconds, between the master stack clock
and the clock on the first slave device that has enabled DC.

• DCInitState — Operating state of the distributed clock:

• DC not enabled, not initialized, or single EtherCAT DC slave: 0
• DC has been started and the EtherCAT DC slaves are in sync with each other: 1

• NetworkToSlaveClkDiff — Time difference, in nanoseconds, between the clock on the first
EtherCAT slave device and the least closely locked clock on the remaining slave devices.

This value applies only to slave devices that have enabled DC. If only one device on the network
has enabled DC, this value is 0.

Data Types: int32

Parameters
Config file (ENI) — ENI file from the EtherCAT configurator
character vector

Specify the ENI file that you exported from the EtherCAT configurator.

You can specify the absolute path name or a relative path name from the current folder. If you specify
only the file name, the software searches for the file in the current folder and on the MATLAB path. If
more than one file with that name exists on the path, MATLAB displays a message box that indicates
a clearer file specification is needed.

Clicking Browse inserts a full, editable path name.

 EtherCAT Init

7-3

Programmatic Use
Block Parameter: config_file

Device index — EtherCAT network identifier
0-15

A unique integer in the range 0–15 that identifies the Ethernet card for an EtherCAT network.

For each EtherCAT network, the software generates a unique device index. The software inserts that
device index as Device index into the EtherCAT Init block that represents the network. For more
information about Speedgoat Target Machine settings, see “Install EtherCAT Network for Execution”
on page 6-11.

Programmatic Use
Block Parameter: device_id

Ethernet Port Number — Port number in target computer
int

The first port reserved for EtherCAT by the speedgoat.configureEthernet function is port 1
here. For more information, see the description of the speedgoat.configureEthernet function in
Speedgoat documentation. For more information about Speedgoat Target Machine settings, see
“Install EtherCAT Network for Execution” on page 6-11.

Programmatic Use
Block Parameter: portnum

DC Tuning — Distributed clock initialization parameter
Large model (default) | Medium model | Small model

Enter the distributed clock initialization parameter from one of these values:

• Large model (default) — Sends 16,000 timing initialization packets and allows 1 second of
settling time. Provides best initial synchronization between multiple slaves that have DC enabled.

• Medium model — Sends 8,000 timing initialization packets and allows 0.3 seconds of settling
time. The model reaches operational state about a second earlier than it does with the Large
model setting.

• Small model — Sends 2,000 timing initialization packets and allows 0.2 seconds of settling
time. The model reaches operational state earlier than it does with the other settings.

Monitor device synchronization at the moment that the model enters the operational state. If the ENI
file enables DC, make sure that the devices are synchronized closely enough for your application.

Programmatic Use
Block Parameter: dctuning

Enable EtherCAT Log for Debugging — Access to debugging and logging block
parameters
Off (default) | Warning | Info | Verbose | All

The selections choose:

• Off — Skip all except fatal errors in log.
• Warning — Include warnings and fatal errors in log.

7 EtherCAT Blocks

7-4

https://www.speedgoat.com/knowledge-center

• Info — Include information displays, warnings, and fatal errors in log.
• Verbose — Include sequencing information from EtherCAT stack, information displays, warnings,

and fatal errors in log.
• All — include low level debugging information and all other categories in log.

The Verbose and All logging levels can produce so much data that it can cause overloads at fast
task rates.

The target log file name is E_Master%d, where %d is the device id value.

Programmatic Use
Block Parameter: enaDebug

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Get Notifications | slrealtime.EtherCAT.filterNotifications | “EtherCAT Init
Block DC Error Values” on page 6-32

Topics
“Configure EtherCAT Network by Using TwinCAT 3” on page 6-7
“Configure EtherCAT Master Node Model” on page 6-12

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Init

7-5

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Get Notifications
Collect notifications from the EtherCAT bus
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Get Notifications block collects notifications from the EtherCAT stack and presents
them to the output as a 21-element vector of int32. At each time step, the block outputs what it has
accumulated and clears itself for the next time step.

The vector contains the number of notifications in element 1, followed by up to 20 notification codes.
The maximum number of notifications is 20. If the bus presents more than 20 notifications to the
output, the block discards the newest notifications and presents the first 20 that were received.

Ports
Output

Values — Self-descriptive 21-element vector containing EtherCAT notification codes
[Length 20 * Notification]

• Length (0 – 20) — the number of notifications in the vector.
• Notification — a composite of a notification type and a specific value. The types are:
• • EC_NOTIFY_GENERIC [0x00000000 (0)] — Represents state changes, such as:0x00000001

(1) — EtherCAT operational state change.
• EC_NOTIFY_ERROR [0x00010000 (65536)] — Represents error states, such as 0x00010001

(65537):cyclic command: working counter error. Some describe changes in error
state.

• EC_NOTIFY_SCANBUS [0x00030000 (3*65536)] — Represents ScanBus error states, such as
0x00030002 (196610):ScanBus mismatch.

• EC_NOTIFY_HOTCONNECT [0x00040000 (4*65536)] — Represents hot connect states, such as
0x00040005 (262149):Slave disappears.

To print the valid notification values and descriptions, call
slrealtime.etherCAT.filterNotifications without an argument.
Data Types: int32

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

7 EtherCAT Blocks

7-6

Programmatic Use
Block Parameter: device_id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. Use the EtherCAT task sample
time.

Programmatic Use
Block Parameter: sample_time

Tips
To collect notifications:

1 Add the EtherCAT Get Notifications block to your model.
2 Connect the EtherCAT Get Notifications block to a File Log block.
3 Use exported data log data from signal data displayed in the Simulation Data Inspector. See

example Get Time and Data Log from EtherCAT Get Notifications Block for the
slrealtime.EtherCAT.filterNotifications function.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
slrealtime.EtherCAT.filterNotifications | EtherCAT Init

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Get Notifications

7-7

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Get Scanbus Error Data
Detects when an EtherCAT device in the model is not responding
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Get Scanbus Error Data block detects when a device in the model is not responding,
provides error output to stop the model, and generates log output that indicates which device is not
responding. The log message provides detailed information about where the EtherCAT network does
not match the ENI file. The log message indicates either that there is a missing device at a network
position or that a different device is found in a network position than is specified in the ENI for that
position. Only the first mismatch found is reported. The block Error output can be used to trigger
the Stop Simulation block.

Ports
Input

Values — Input from EtherCAT Get Notifications block
[Length 20 * Notification]

The block scans input from the EtherCAT Get Notifications block.

Output

Error — Indicates scanbus error
false (default) | true

One boolean output that is true for one cycle following a notification for a scanbus error.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Get Notifications | slrealtime.EtherCAT.filterNotifications

External Websites
www.ethercat.org
www.beckhoff.com

7 EtherCAT Blocks

7-8

https://www.ethercat.org
https://www.beckhoff.com

www.acontis.com/en/

 EtherCAT Get Scanbus Error Data

7-9

https://www.acontis.com/en/

EtherCAT PDO Receive
Receive data from slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT PDO Receive block receives data from the EtherCAT slave device.

The block parameter dialog box has two sections, parameters and signal information. When you
specify an EtherCAT network and device variable name:

• The EtherCAT PDO Receive block mask is updated with the selected signal name.
• The signal information in the block parameter dialog box is updated to reflect the device variable.

Note If an error occurs while the software parses the configuration file specified in the EtherCAT Init
block, this block displays an error message.

Ports
Output

D — Data received from slave device
[double]

Vector of data received from the EtherCAT slave device.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.
Programmatic Use
Block Parameter: device_id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the device variable
that you selected.

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and block
attributes, see “EtherCAT Configurator Component Mapping” on page 6-30.

7 EtherCAT Blocks

7-10

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types” on page 6-
31.

Programmatic Use
Block Parameter: sig_name

Signal Offset — Location in the process of signal data
integer

This property is read-only.

After the execution of the EtherCAT Init block, location in the process image from which the data is
available.

Programmatic Use
Block Parameter: sig_offset

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Programmatic Use
Block Parameter: sig_type

Type Size (bits) — Size of EtherCAT data type
integer

This property is read-only.

Size in bits of the EtherCAT data type.

Programmatic Use
Block Parameter: type_size

Signal Dimension — Dimension of the signal
integer

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Programmatic Use
Block Parameter: sig_dim

Sample Time — Rate at which this block is executed
numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the ENI file.

Programmatic Use
Block Parameter: sample_time

 EtherCAT PDO Receive

7-11

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT PDO Transmit

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-12

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT PDO Transmit
Send data to slave device represented by process data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT PDO Transmit block transmits computed data to a particular variable in the EtherCAT
slave device.

The block parameter dialog box has two sections, parameters and signal information. When you
specify an EtherCAT network and device variable name:

• The EtherCAT PDO Receive block mask is updated with the selected signal name.
• The signal information in the block parameter dialog box is updated to reflect the device variable.

Note If an error occurs while the software parses the configuration file specified in the EtherCAT Init
block, this block displays an error message.

Ports
Input

D — Data to transmit to slave device
[double]

Vector of data to transmit to the EtherCAT slave device.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-15

To associate a block with an EtherCAT network, copy the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Signal name — EtherCAT device variable name
character vector

From the list, select the EtherCAT device variable name.

The block parameter dialog box updates the read-only signal information to reflect the device variable
that you selected.

 EtherCAT PDO Transmit

7-13

For a mapping of EtherCAT configurator components to Simulink Real-Time blocks and block
attributes, see “EtherCAT Configurator Component Mapping” on page 6-30.

For a mapping of Simulink data types to EtherCAT data types, see “EtherCAT Data Types” on page 6-
31.

Programmatic Use
Block Parameter: sig_name

Signal Offset — Location in the process of signal data
integer

This property is read-only.

After the execution of the EtherCAT Init block, location in the process image from which the data is
available.

Programmatic Use
Block Parameter: sig_offset

Signal Type — Data type for EtherCAT data
character vector

This property is read-only.

Simulink data type for the EtherCAT data.

Programmatic Use
Block Parameter: sig_type

Type Size (bits) — Size of EtherCAT data type
integer

This property is read-only.

Size in bits of the EtherCAT data type.

Programmatic Use
Block Parameter: type_size

Signal Dimension — Dimension of the signal
integer

This property is read-only.

The EtherCAT blocks support vectors and scalars (vectors of dimension 1).

Programmatic Use
Block Parameter: sig_dim

Sample Time — Rate at which this block is executed
numeric

This property is read-only.

This rate is the execution rate of the EtherCAT task, as specified in the ENI file.

7 EtherCAT Blocks

7-14

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT PDO Receive

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT PDO Transmit

7-15

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Get State
Get state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Get State block returns the state of the EtherCAT network.

Ports
Output

State — State received from the EtherCAT network
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization — The system finds terminal devices and initializes

the communication controller.
PREOP 2 Preoperational — The system uses the communication controller to

exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The supervisor sends input data to the terminal device.
The terminal device output remains in a safe state.

OP 8 Operational — The network is in full operation. The supervisor
sends input data to the terminal device. The terminal device
responds with output data.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

7 EtherCAT Blocks

7-16

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Set State

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Get State

7-17

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Set State
Set state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Set State block sets the state of the EtherCAT network to the value passed in through
the New State port.

Ports
Input

New State — State transmitted to the EtherCAT network
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization — The system finds terminal devices and initializes

the communication controller.
PREOP 2 Preoperational — The system uses the communication controller to

exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The supervisor sends input data to the terminal device.
The terminal device output remains in a safe state.

OP 8 Operational — The network is in full operation. The supervisor
sends input data to the terminal device. The terminal device
responds with output data.

Output

Prev State — Previous state of the network
1 | 2 | 4 | 8

This port returns the value of the previous setting of the New State port.

Error — Report an EtherCAT state error
0 | integer

If no error occurs, this port returns 0. Otherwise, it returns a nonzero value.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-11

7 EtherCAT Blocks

7-18

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Timeout — Time to wait for the network to change state
integer

Enter the number of seconds to wait for the EtherCAT network state to transition.

Set the timeout to 0 to return immediately. If you specify a nonzero Timeout value, in the
Configuration Parameters Solver pane, set the Fixed-step size parameter to a value larger than the
Timeout value.

Programmatic Use
Block Parameter: timeout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Get State

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Set State

7-19

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Get Device State
Get state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Get Device State block returns the state of a device on the EtherCAT network.

Ports
Output

State — State received from the selected device
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization — The system finds terminal devices and initializes

the communication controller.
PREOP 2 Preoperational — The system uses the communication controller to

exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The supervisor sends input data to the terminal device.
The terminal device output remains in a safe state.

OP 8 Operational — The network is in full operation. The supervisor
sends input data to the terminal device. The terminal device
responds with output data.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of EtherCAT device
character vector

Select an EtherCAT device from the list of available devices provided by the ENI configuration file.
The configuration file is selected by the EtherCAT Init block.

7 EtherCAT Blocks

7-20

Programmatic Use
Block Parameter: device_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Set State | EtherCAT Get State | EtherCAT Set Device State

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Get Device State

7-21

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Set Device State
Set state of EtherCAT network
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Set Device State block sets the state of a device on the EtherCAT network to the value
passed through the New State port.

Ports
Input

New State — State transmitted to the EtherCAT network
1 | 2 | 4 | 8

State Value Description
INIT 1 Initialization — The system finds terminal devices and initializes

the communication controller.
PREOP 2 Preoperational — The system uses the communication controller to

exchange system-specific initialization data. In this state, the
network cannot transmit or receive signal data.

SAFEOP 4 Safe operational — The network is running and ready for full
operation. The supervisor sends input data to the terminal device.
The terminal device output remains in a safe state.

OP 8 Operational — The network is in full operation. The supervisor
sends input data to the terminal device. The terminal device
responds with output data.

Enable — Enables block to send state request
0 | 1

The port takes a Boolean value. When true (1), the block sends a new state request. When false (0),
the block does nothing.

Output

Prev State — Previous state of the selected device
1 | 2 | 4 | 8

This port returns the value of the previous state of the device. That value might not be the same as
the previous state of this block.

Error — Report an EtherCAT state error
0 | integer

7 EtherCAT Blocks

7-22

If no error occurs, this port returns 0. Otherwise, it returns a nonzero value. For more information,
see “EtherCAT Error Codes” on page 6-33.

Parameters
Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of EtherCAT device
character vector

Select an EtherCAT device from the list of available devices provided by the ENI configuration file.
The configuration file is selected by the EtherCAT Init block.

Programmatic Use
Block Parameter: device_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Set State | EtherCAT Get State | EtherCAT Get Device State

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Set Device State

7-23

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Sync SDO Upload
Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SDO Upload block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a read request. The block then waits until it receives a response or until
the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For a list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
Index — Index of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error output.

7 EtherCAT Blocks

7-24

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter the vector length as found in the CoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains CANopen register
character vector

From the list, select the name of the device that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

The maximum number of milliseconds to wait for a response before returning a timeout error.

 EtherCAT Sync SDO Upload

7-25

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Sync SDO Download

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-26

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Sync SDO Download
Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SDO Download block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a write request. The block then waits until it receives a response or until
the timeout period is over.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.

Output

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For a list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
Index — Index of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a nonzero value through the Error output.

Programmatic Use
Block Parameter: index

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzero value through the Error output.

 EtherCAT Sync SDO Download

7-27

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter the vector length as found in the CoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains CANopen register
character vector

From the list, select the name of the device that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

The maximum number of milliseconds to wait for a response before returning a timeout error.

7 EtherCAT Blocks

7-28

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Sync SDO Upload

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Sync SDO Download

7-29

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Async SDO Upload
Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SDO Upload block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a read request. It then immediately returns whatever value was returned
from the device on an earlier call to the block.

Ports
Input

Enable — Enables block to upload data
int32

A value of 0 disables uploads. A constant value of 1 will send a new request each time the status
returns to the idle state.

Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device.

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For a list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
Index — Index of CANopen register
integer

7 EtherCAT Blocks

7-30

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a 3 through the Status output and a nonzero value
through the Error output.

Programmatic Use
Block Parameter: index

Access Mode — Select access mode for CoE variables
Single Subindex (default) | Complete Access

When the Access Mode is Complete Access, the SubIndex parameter is hidden, and the correct
subindex is assumed in each case. The complete access protocol for CoE access to variables provides:

• Access to all subindexes attached to a single index in the CoE dictionary for a single terminal
device.

• Read or write all subindexes in the time it would take to read or write a single one of them.
• Simultaneously update all subindexes when a tuning parameter set is being written
• Capture a simultaneous read of all subindexes
• Allow use of EtherCAT devices that require complete access for configuration

Programmatic Use
Block Parameter: complete

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzerio value through the Error output.

Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter the vector length as found in the CoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

 EtherCAT Async SDO Upload

7-31

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains CANopen register
character vector

From the list, select the name of the device that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Complete Access Mode

You can select the access mode for the EtherCAT Async SDO Upload block and EtherCAT Async SDO
Download block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Async SDO Download

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31
“Update Async SDO Block Variables by Using Complete Access Mode” on page 6-15

External Websites
www.ethercat.org
www.beckhoff.com

7 EtherCAT Blocks

7-32

https://www.ethercat.org
https://www.beckhoff.com

www.acontis.com/en/

 EtherCAT Async SDO Upload

7-33

https://www.acontis.com/en/

EtherCAT Async SDO Download
Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SDO Download block selects a CANopen register by Index value in the specified
EtherCAT slave and sends a write request. The block then immediately continues processing its input
data.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device.

Enable — Enables block to download data
int32

A value of 0 disables downloads. A value greater than or equal to 1 enables the block to download
data.

Output

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For a list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
Index — Index of CANopen register
integer

7 EtherCAT Blocks

7-34

Specify the hexadecimal (for example, 0x7) or decimal index of the CANopen register.

If you specify an invalid index, the block returns a 3 through the Status output and a nonzero value
through the Error output.
Programmatic Use
Block Parameter: index

Access Mode — Select access mode for CoE variables
Single Subindex (default) | Complete Access

When the Access Mode is Complete Access, the protocol for CoE access to variables provides:

• Access to all subindexes attached to a single index in the CoE dictionary for a single terminal
device.

• Read or write all subindexes in the time it would take to read or write a single one of them.
• Simultaneously update all subindexes when a tuning parameter set is being written
• Capture a simultaneous read of all subindexes
• Allow use of EtherCAT devices that require complete access for configuration

Programmatic Use
Block Parameter: complete

Subindex — Subindex of CANopen register
integer

Specify the hexadecimal (for example, 0x7) or decimal subindex of the CANopen register.

If you specify an invalid subindex, the block returns a nonzerio value through the Error output.
Programmatic Use
Block Parameter: subIndex

Data Type — Data type of CANopen register
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select the data type of the CANopen register.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.
Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of CANopen register
1 (default)

Specify the row and column dimension of the CANopen register.

Enter the vector length as found in the CoE description for the slave in its manual.
Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT network identifier
0 (default) | 0-11

 EtherCAT Async SDO Download

7-35

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains CANopen register
character vector

From the list, select the name of the device that contains the CANopen register.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: selected_slave

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Complete Access Mode

You can select the access mode for the EtherCAT Async SDO Upload block and EtherCAT Async SDO
Download block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Async SDO Upload

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31
“Update Async SDO Block Variables by Using Complete Access Mode” on page 6-15

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-36

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Sync SSC/SoE Upload
Read data synchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Upload block provides synchronous SERCOS interface (SErial Real time
COmmunication Specification) over EtherCAT (SoE) upload. The block selects an IDN in the specified
slave and sends an upload (read) request. The block then waits until it receives a response to the
request or until the timeout period expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type specified in Data
Type and a vector dimension given by Dimension.

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

• First field (bit 15): S for Standard data, P for product-specific data
• Second field (bit 14 - 12): 0..7 for parameter set
• Third field (bit 11 - 0): 0..4095 for data-block number

 EtherCAT Sync SSC/SoE Upload

7-37

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks apply to only motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the zero-based index of the drive or motor channel on this slave at
which this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the
motor. Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, refer to the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, refer to the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter the vector
length as found in the SoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains the IDN
character vector

From the list, select the name of the device that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

7 EtherCAT Blocks

7-38

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync SSC/SoE
Uploadblock require at least three steps of the main EtherCAT processing task. Select a sample time
that is three times that of the main task sample time or the model can overload and stop.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the maximum number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Download

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

 EtherCAT Sync SSC/SoE Upload

7-39

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Sync SSC/SoE Download
Transmit data synchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Sync SSC/SoE Download block provides synchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) download. The block selects an IDN in the
specified slave and sends a download (write) request. The block then waits until it receives a
response to the request or until the timeout period expires.

The response to an operation takes several ticks of the main task sample time. Assign the
synchronous blocks a sample time slower than the main task sample time.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Output

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 6-33.

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

• First field (bit 15): S for Standard data, P for product-specific data
• Second field (bit 14 - 12): 0..7 for parameter set
• Third field (bit 11 - 0): 0..4095 for data-block number

7 EtherCAT Blocks

7-40

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks apply to only motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the zero-based index of the drive or motor channel on this slave at
which this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the
motor. Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, refer to the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, refer to the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter the vector
length as found in the SoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains the IDN
character vector

From the list, select the name of the device that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

 EtherCAT Sync SSC/SoE Download

7-41

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited. The EtherCAT Sync SSC/SoE Download block and the EtherCAT Sync SSC/SoE
Uploadblock require at least three steps of the main EtherCAT processing task. Select a sample time
that is three times that of the main task sample time or the model can overload and stop.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the maximum number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Sync SSC/SoE Upload

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org
www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-42

https://www.ethercat.org
https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Async SSC/SoE Upload
Read data asynchronously from slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SSC/SoE Upload block provides asynchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) upload. The block selects an IDN in the
specified slave and sends an upload (read) request. After sending the request, the block immediately
returns whatever value was returned from the device on an earlier call to the block.

Ports
Input

Enable — Enables block to upload data
int32

A value 0 disables uploads. A value greater than or equal to 1 enables the block to upload data.

Output

Data — Data received from slave device
numeric

Returns data received from the EtherCAT slave device. The data signal has the type specified in Data
Type and a vector dimension given by Dimension.

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 6-33.

 EtherCAT Async SSC/SoE Upload

7-43

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

• First field (bit 15): S for Standard data, P for product-specific data
• Second field (bit 14 - 12): 0..7 for parameter set
• Third field (bit 11 - 0): 0..4095 for data-block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks apply to only motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the zero-based index of the drive or motor channel on this slave at
which this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the
motor. Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, refer to the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, refer to the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter the vector
length as found in the SoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

7 EtherCAT Blocks

7-44

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains the IDN
character vector

From the list, select the name of the device that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the maximum number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Async SSC/SoE Download

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org

 EtherCAT Async SSC/SoE Upload

7-45

https://www.ethercat.org

www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-46

https://www.beckhoff.com
https://www.acontis.com/en/

EtherCAT Async SSC/SoE Download
Transmit data asynchronously to slave device represented by service data object
Library: Simulink Real-Time / EtherCAT

Description
The EtherCAT Async SSC/SoE Download block provides asynchronous SERCOS interface (SErial Real
time COmmunication Specification) over EtherCAT (SoE) download. The block selects an IDN in the
specified slave and sends a download (write) request. After sending the request, the block
immediately continues processing its input data.

Ports
Input

Data — Data to write to slave device
numeric

Input data for writing to the EtherCAT slave device. The data signal has the type specified in Data
Type and vector dimension given by Dimension.

Enable — Enables block to download data
int32

The Enable input is level sensitive and the block remains enabled while the input is non-zero. To send
a value just once, you can enable the block with a single sample time pulse. There is a lag of
approximately three cycles after the pulse for the data to send.

A value 0 disables downloads. A value greater than or equal to 1 enables the block to download data.

Output

Status — Status of data transfer
0 | 1 | 2 | 3

Status of asynchronous data transfer:

• 0 — Mailbox transfer object idle, transfer not running
• 1 — Mailbox transfer object running, transfer not complete
• 2 — Transfer successfully executed
• 3 — Error occurred during transfer request

Error — Report an EtherCAT network error
0 | integer

If no error occurs, this port transmits 0. Otherwise, it transmits a nonzero value. For list of error
codes, see “EtherCAT Error Codes” on page 6-33.

 EtherCAT Async SSC/SoE Download

7-47

Parameters
IDN — Identification Number
character vector

Identify parameters.

The documentation for your EtherCAT device specifies the IDN values. You can select the IDN as a
character vector that represents a 16-bit integer (according to IEC 61800 -7 -204), such as S-0-0150
or P-0-0150 with:

• First field (bit 15): S for Standard data, P for product-specific data
• Second field (bit 14 - 12): 0..7 for parameter set
• Third field (bit 11 - 0): 0..4095 for data-block number

Programmatic Use
Block Parameter: idn

Drive Number — Index number of the drive
integer

Specify the decimal index of the drive.

SoE blocks apply to only motor controllers. A single slave can support one or more drive or motor
channels. The drive number is the zero-based index of the drive or motor channel on this slave at
which this block is aimed. In SoE terminology, the drive is the logic that sends control signals to the
motor. Typically, this logic is a small processor inside the slave.

Programmatic Use
Block Parameter: drive

Data Type — Data type of the IDN
double (default) | single | int8 | uint8 | int16 | uint16 | int32 | uint32 | boolean

To identify the data type for the IDN, refer to the slave documentation for the description of the IDN
and the data type it uses. From the list, select the data type of the IDN.

If you select a data type that does not match the type of the entry, the block returns a nonzero value
through the Error output.

Programmatic Use
Block Parameter: sig_type

Dimension — Dimension of data for this IDN
1 (default)

Specify the row dimension of data for this IDN.

To identify the dimension of data (vector size) for the IDN, refer to the slave documentation for the
description of the IDN and the number of data type values (the dimension) it uses. Enter the vector
length as found in the SoE description for the slave in its manual.

Programmatic Use
Block Parameter: sig_dim

7 EtherCAT Blocks

7-48

Device index — EtherCAT network identifier
0 (default) | 0-11

To associate a block with an EtherCAT network, enter the Device index value from the EtherCAT Init
block representing that network into the Device index for the block.

Programmatic Use
Block Parameter: device_id

Device Name — Name of device that contains the IDN
character vector

From the list, select the name of the device that contains the IDN.

The block populates this drop-down list with the contents of the configuration file.

Programmatic Use
Block Parameter: slave_name

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sample_time

Timeout — Time to wait for response from slave
numeric

Enter the maximum number of milliseconds to wait for a response from the EtherCAT slave.

Programmatic Use
Block Parameter: timeout

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
EtherCAT Init | EtherCAT Async SSC/SoE Upload

Topics
“EtherCAT Configurator Component Mapping” on page 6-30
“EtherCAT Data Types” on page 6-31

External Websites
www.ethercat.org

 EtherCAT Async SSC/SoE Download

7-49

https://www.ethercat.org

www.beckhoff.com
www.acontis.com/en/

7 EtherCAT Blocks

7-50

https://www.beckhoff.com
https://www.acontis.com/en/

IP Internet Protocol Blocks Library

51

Real-Time TCP Communication Support

8

TCP Transport Protocol
The Simulink Real-Time software supports communication from the target computer to other systems
or devices by using Transmission Control Protocol (TCP). TCP provides ordered and error-checked
packet transport.

TCP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly known as
TCP/IP.

• Stream — TCP is a stream-oriented protocol.

TCP is a stream of data that flows from one end of the network to the other. Another stream of
data flows in the other direction. The TCP stack at the transmitting end is responsible for breaking
the stream of data into packets and sending those packets. The stack at the receiving end is
responsible for reassembling the packets into a data stream by using information in the packet
headers.

• Connection — TCP is a connection-based protocol.

In TCP, the two ends of the communication link must be connected throughout the communication.
• Error Detection — TCP detects errors.

TCP packets contain a unique sequence number. The starting sequence number is communicated
from the transmitter to the receiver at the beginning of communication. The receiver
acknowledges each packet. That acknowledgment contains the sequence number so that the
sender knows which packet was acknowledged. Lost packets can be retransmitted. The sender
knows that they did not reach their destination because the sender did not receive an
acknowledgment. The receiver can reassemble in order packets that arrive out of sequence.
Timeouts can be established because the sender knows from the first few packets how long it
takes to transmit a packet and receive its acknowledgment.

TCP communication requires a continuous connection and two-way streaming data is exchanged.

When describing TCP, the words reliable and unreliable have a specific meaning.

• Reliable means that if a packet is not acknowledged, it is retransmitted. It does not mean that the
protocol always succeeds.

• Unreliable means that if too many packets are not acknowledged, the protocol can time out. It
does not mean that the protocol packets usually fail to arrive.

You can construct a packet from Simulink data types such as double, int8, int32, uint8, or a
combination of these data types. The Simulink Real-Time block library provides blocks for combining
various signals into one packet (packing), and then transmitting it. It also provides blocks for splitting
a packet (unpacking) into its component signals that you can then use in a Simulink model.

This information applies to both communication with a shared Ethernet board and communication
with a dedicated Ethernet board. Consider adding a dedicated Ethernet board for enhanced
performance over communication that uses a shared Ethernet board. Shared TCP communication
shares bandwidth with the link between the development and target computers.

See Also
TCP Receive | TCP Send | TCP Client | TCP Server

8 Real-Time TCP Communication Support

8-2

External Websites
• www.ietf.org/rfc/rfc793.txt

 TCP Transport Protocol

8-3

https://www.ietf.org/rfc/rfc793.txt

TCP Blocks

9

TCP Client
Configure TCP client
Library: Simulink Real-Time / IP

Description
The TCP Client block configures a TCP client.

The parameters Client IP address and Client port are optional. The Client IP address applies
when the block executes in a real-time application on a target computer or in a model simulation on a
development computer. If your model is running in Simulink on the development computer, you can
use this block to transmit data to a remote device. In this case, the Windows® operating system
determines the network connection.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect to the Ethernet device.

Output

Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Parameters
Use host-target connection — Use Ethernet connection between development and
target computers
'off' (default) | 'on'
Dependency

When you select this parameter, it deactivates the Client IP address parameter and excludes the
ports 1 through 1023 and 5500 through 5560 from use by TCP.

9 TCP Blocks

9-2

Programmatic Use
Block Parameter: useHostTargetConn

Remote server IP address — IP address of the server device
x.x.x.x

Enter the IP address of the server to which you want to connect the client.

Programmatic Use
Block Parameter: remoteAddress

Remote server port — Port number of the server device
1–65535

Enter the port number of the server to which you want to connect the client.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.

Programmatic Use
Block Parameter: remotePort

Advanced Parameters

Client IP address — IP address of the client device that is being configured
no value (default) | x.x.x.x

If you are using a dedicated Ethernet card, this value must match the Local IP Address parameter in
the IP Config block for the network interface. The default value for the Client IP address field is no
value. This empty field means that the operating system chooses the Client IP address for TCP
transmission.

Programmatic Use
Block Parameter: clientAddress

Client local port — IP port of the client device that is being configured
no value (default) | 0–65535

The combination of Client IP address and Client local port must be unique.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.
Values '-1', '0', or 'empty' mean that the block transmits data by using any available port.

Programmatic Use
Block Parameter: clientPort

Version History
Introduced in R2020b

Changed Parameters Client IP Address and Client Port

The parameters for the TCP Client block have changed. The parameters Client IP address and
Client port are optional.

 TCP Client

9-3

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
TCP Server

External Websites
www.ietf.org/rfc/rfc793.txt

9 TCP Blocks

9-4

https://www.ietf.org/rfc/rfc793.txt

TCP Receive
Receive data over TCP network from a remote device
Library: Simulink Real-Time / IP

Description
The TCP Receive block receives data sent from a remote client device to a server application on a
target computer.

Ports
Input

Enable — Allow data reception
integer

When Enable > 0, the block attempts to receive data sent to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Output

Data — Data that is received from the remote client
vector

The parameter Receive width determines the maximum size of the data vector.
Data Types: uint8

Length — Actual size of data vector
double

To test whether the number of data items exceeds the width of the data output port, use this value.

Parameters
Receive using — List of IP address and port pairs
x.x.x.x:y

This property is read-only.

The block receives the list of IP address and port pairs from the TCP configuration blocks in the
model.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.

 TCP Receive

9-5

Programmatic Use
Block Parameter: socketAddPort

Receive width — Maximum expected length of data vector
1–65504

Maximum number of uint8 values that the block expects to receive from the client device.

Programmatic Use
Block Parameter: rcvWidth

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sampleTime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
TCP Client | TCP Server

External Websites
www.ietf.org/rfc/rfc793.txt

9 TCP Blocks

9-6

https://www.ietf.org/rfc/rfc793.txt

TCP Send
Send data over TCP network to a remote device
Library: Simulink Real-Time / IP

Description
The TCP Send block sends data from a server application on a target computer to a remote client
device.

Ports
Input

Enable — Allow data transmission
integer

When Enable > 0, the block attempts to transmit data to the remote device.

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Data — Data to transmit over the TCP network
vector

Vector of Length to transmit to the client device.
Data Types: uint8

Length — Length of data vector
double

Number of uint8 values to transmit to the client device.

Output

Status — Number of bytes sent
double

Returns the number of uint8 values transmitted to the client device.

Parameters
Send using — List of IP address and port pairs
x.x.x.x:y

This property is read-only.

 TCP Send

9-7

The block receives the list of IP address and port pairs from the TCP configuration blocks in the
model.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.

Programmatic Use
Block Parameter: socketAddPort

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sampleTime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
TCP Client | TCP Server

External Websites
www.ietf.org/rfc/rfc793.txt

9 TCP Blocks

9-8

https://www.ietf.org/rfc/rfc793.txt

TCP Server
Configure TCP server
Library: Simulink Real-Time / IP

Description
The TCP Server block configures a TCP server.

Ports
Input

Enable — Connect block to remote Ethernet device
integer

If Enable is greater than zero, the block connects to the Ethernet device. Otherwise, the block does
not connect to the Ethernet device.

Output

Status — Device returns a status of not connected or connected
0 | 1

The status value is one of:

• 0 — Not connected
• 1 — Connected

As a best practice, connect the Status output of a TCP configure block to the Enable input of the
associated TCP Send and TCP Receive blocks.

Parameters
Use host-target connection — Use Ethernet connection between development and
target computers
'off' (default) | 'on'

Dependency

When you select this parameter, it deactivates the Server IP address parameter and excludes the
ports 1 through 1023 and 5500 through 5560 from use by TCP.

Programmatic Use
Block Parameter: useHostTargetConn

Server IP address — IP address of the server device that is being configured
x.x.x.x

 TCP Server

9-9

If you are using a dedicated Ethernet card, this value must match the IP address configured for the
Ethernet card on the target computer.

Programmatic Use
Block Parameter: serverAddress

Server port — IP port of the server device that is being configured
1–65535

The combination of Server IP address and Server port must be unique.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.

Programmatic Use
Block Parameter: serverPort

Version History
Introduced in R2020b

See Also
TCP Client

External Websites
www.ietf.org/rfc/rfc793.txt

9 TCP Blocks

9-10

https://www.ietf.org/rfc/rfc793.txt

Real-Time UDP Communication Support

• “UDP Transport Protocol” on page 10-2
• “UDP Data Exchange by Using Shared Ethernet Board” on page 10-4
• “UDP Communication Setup” on page 10-9
• “UDP and Variable-Size Signals” on page 10-10

10

UDP Transport Protocol
The Simulink Real-Time software supports communication from the target computer to other systems
or devices by using User Datagram Protocol (UDP) packets. UDP is a transport protocol that provides
a direct method to send and receive packets over an IP network. UDP uses this direct method at the
expense of reliability by limiting error checking and recovery.

UDP is a transport protocol layered on top of the Internet Protocol (IP). It is commonly known as
UDP/IP.

• Packet — UDP is a packet-oriented protocol. You divide the data into packets and the protocol
sends them to the receiver.

• Connectionless — UDP is a connectionless protocol. The protocol sends a packet to the receiver
without checking to see if the receiver is ready to receive a packet. If the receiver is not ready, the
packet is lost.

• No Error Detection— UDP does not support error detection. The protocol sends packets and does
not track them. If packets arrive out of sequence, or are lost in transmission, the receiving end or
the sending end does not know.

UDP communication requires that the sender identifies the receiver. If the receiver is not found or the
communication is lost in transit, the packet is discarded.

When describing UDP, the words reliable and unreliable have a specific meaning.

• Reliable means that the protocol is not guaranteed to succeed. It does not mean that the protocol
always succeeds.

• Unreliable means that protocol packets can fail to arrive without the system detecting that the
packets did not arrive. It does not mean that the protocol packets usually fail to arrive.

UDP continues to receive packets while the receiver is active and processes data as quickly as it
arrives.

UDP is a commonly used transport layer because of its lightweight nature. When used from Simulink
Real-Time, UDP gives the real-time application a good chance of succeeding in real-time execution.
Also, the datagram nature of UDP is optimal for sending samples of data from the real-time
application generated by the Simulink Coder™ software. If the real-time application cannot process
the data as quickly as it arrives, only the most recent packet is used. The earlier packets are ignored.

You can construct a packet from Simulink data types such as double, int8, int32, uint8, or a
combination of these data types. The Simulink Real-Time block library provides blocks for combining
various signals into one packet (packing), and then transmitting it. It also provides blocks for splitting
a packet (unpacking) into its component signals that you can then use in a Simulink model.

The preceding information applies to communication with a shared Ethernet board and
communication with a dedicated Ethernet board. Consider adding a dedicated Ethernet board for
enhanced performance over communication by using a shared Ethernet board. Shared UDP
communication shares bandwidth with the link between the development and target computers.

See Also
UDP Send | UDP Receive

10 Real-Time UDP Communication Support

10-2

Related Examples
• “Target to Host Transmission by Using UDP”

More About
• “UDP Communication Setup” on page 10-9
• “UDP and Variable-Size Signals” on page 10-10

 UDP Transport Protocol

10-3

UDP Data Exchange by Using Shared Ethernet Board
In this section...
“UDP Data Transfer” on page 10-4
“Set Up slrt_ex_udpsendreceiveA” on page 10-5
“Set Up slrt_ex_udpsendreceiveB” on page 10-6

This example shows how to set up two-way data exchange by using an Ethernet board that is shared
with the connection between the development and target computers. Using this configuration, you
can communicate between two Simulink Real-Time systems, between the Simulink Real-Time and
Simulink products, or between two Simulink models. When one or both of the systems are running as
a non-real-time Simulink model, be sure to set the sample time.

This example does not require configuring a dedicated Ethernet card because the example uses the
connection between the development and target computers.

The example models are named slrt_ex_udpsendreceiveA and slrt_ex_udpsendreceiveB.
Replace the port and IP address examples with ports and addresses as required by your network. This
example uses a target computer located at IP address 192.168.7.5 and uses a development
computer located at IP address 192.168.7.2.

UDP Data Transfer
The models transfer two different data sets between them, one data set from
slrt_ex_udpsendreceiveA to slrt_ex_udpsendreceiveB and another data set in the opposite
direction.

For this example, the inputs are generated by using Simulink Constant blocks that use the MATLAB
random number function (rand). The Simulink Coder software uses this function during code
generation to generate random numbers. To generate the vector of uint8 (3x3), use the MATLAB
function:

uint8(255 * rand(3,3))

because 255 is the maximum value for an unsigned 8-bit integer. The other values are generated
similarly.

slrt_ex_udpsendreceiveA to slrt_ex_udpsendreceiveB

The UDP data to send is 75 bytes wide. The data to transfer is in these formats:

• [3 3] of uint8 (9 bytes)
• [1 1] of uint16 (2 bytes)
• [2 4] of double (64 bytes)

When packed, the data is aligned on 1-byte boundaries.

slrt_ex_udpsendreceiveB to slrt_ex_udpsendreceiveA

The UDP data to be sent is 79 bytes wide. The data to transfer is in these formats:

10 Real-Time UDP Communication Support

10-4

• [4 1] of single (16 bytes)
• [2 2] of double (32 bytes)
• [2 2] of uint32 (16 bytes)
• [5 3] of int8 (15 bytes)

When packed, the data is aligned on 2-byte boundaries. A zero-valued pad byte is added during
packing.

Set Up slrt_ex_udpsendreceiveA
The final slrt_ex_udpsendreceiveA is shown in the figure.

The tables list the parameters for the send and receive sides of the model.

slrt_ex_udpsendreceiveA Send Side

Block Parameter Value
Byte Packing Output port (packed) data

type
'uint8'

Input port (unpacked) data
types (cell array)

{'uint8', 'uint16', 'double'}

Byte alignment 1
UDP Send Local IP address Use host-target connection

 UDP Data Exchange by Using Shared Ethernet Board

10-5

Block Parameter Value
Local port -1 (autoselect)
To IP address 192.168.7.5
To port 25000
Sample time (-1 for
inherited)

0.01

• The Length input port receives the output of a Width block that calculates the width of the signal
connected to the Data port.

• The Byte Packing block settings match the Byte Unpacking block of
slrt_ex_udpsendreceiveB.

slrt_ex_udpsendreceiveA Receive Side

Block Parameter Value
UDP Receive Local IP address Use host-target connection

Local port 25000
Receive width 80
Receive from any source off
From IP address 192.168.7.2
Sample time (-1 for inherited) 0.01

Byte Unpacking Output port (unpacked) data
types (cell array)

{'single', 'double',
'uint32', 'int8'}

Output port (unpacked)
dimensions (cell array)

{4, [2 2], [2 2], [5 3]}

Byte alignment 2

• The second output port of the UDP Receive block is sent into a terminator. You can use this output
to determine when a packet has arrived. The same is true for the outputs of the Byte Unpack
block.

• The Receive width of the UDP Receive block matches the output port width of the Byte Packing
block in slrt_ex_udpsendreceiveB.

• The Byte Unpacking block settings match the settings of the Byte Packing block of
slrt_ex_udpsendreceiveB.

• The number of unpacked bytes is 79. The byte alignment is 2. The Byte Unpacking block assumes
that the input vector includes a pad 0 to align the vector on an even-numbered boundary.

Set Up slrt_ex_udpsendreceiveB
The final slrt_ex_udpsendreceiveB model is shown in the figure.

The tables list the parameters for the receive side and the send side of the model.

10 Real-Time UDP Communication Support

10-6

slrt_ex_udpsendreceiveB Receive Side

Block Parameter Value
UDP Receive Local IP address Use host-target connection

Local port 25000
Receive width 75
Receive from any source off
From IP address 192.168.7.5
Sample time (-1 for inherited) 0.01

Byte Unpacking Output port (unpacked) data
types (cell array)

{'uint8', 'uint16',
'double'}

Output port (unpacked)
dimensions (cell array)

{[3 3], 1, [2 4]}

Byte alignment 1

• The second output port of the UDP Receive block is sent into a terminator. You can use this output
to determine when a packet has arrived. The same is true for the outputs of the Byte Unpack
block.

• The Receive width of the UDP Receive block matches the output port width of the Byte Packing
block in slrt_ex_udpsendreceiveA.

• The Byte Unpacking block settings match the Byte Packing block in
slrt_ex_udpsendreceiveA.

 UDP Data Exchange by Using Shared Ethernet Board

10-7

slrt_ex_udpsendreceiveB Send Side

Block Parameter Value
Byte Packing Output port (packed) data

type
'uint8'

Input port (unpacked) data
types (cell array)

{'single', 'double', 'uint32',
'int8'}

Byte alignment 2
UDP Send Local IP address Use host-target connection

Local port -1 (autoselect)
To IP address 192.168.7.2
To port 25000
Sample time (-1 for
inherited)

0.01

• The Length input port receives the output of a Width block that calculates the width of the signal
connected to the Data port.

• The Byte Packing block settings match the settings of the Byte Unpacking block of
slrt_ex_udpsendreceiveA.

• The number of unpacked bytes is 79. The byte alignment is 2. The Byte Packing block pads the
output vector with 0 to align on an even-numbered boundary.

See Also
UDP Send | UDP Receive

Related Examples
• “Target to Host Transmission by Using UDP”

More About
• “UDP Transport Protocol” on page 10-2
• “UDP Communication Setup” on page 10-9
• “UDP and Variable-Size Signals” on page 10-10

10 Real-Time UDP Communication Support

10-8

UDP Communication Setup
The infrastructure provided in the Simulink Real-Time Library for UDP communication consists of two
blocks: a UDP Send block and a UDP Receive block. These blocks are in the Simulink Real-Time
Library, available from the Simulink Library under Simulink Real-Time. You can also access them
from the MATLAB command line by typing:

slrealtimelib

The blocks are located under the IP heading in the library. The UDP Send block takes as input a
vector of type uint8. The UDP Receive block outputs a vector of uint8. To convert arbitrary
Simulink data types into this vector of uint8, use a Byte Packing block. To convert a vector of
uint8s back into arbitrary Simulink data types, use a Byte Unpacking block.

If you are using a dedicated Ethernet port for UDP communication, use the Speedgoat Ethernet
Configuration utility to configure the dedicated Ethernet board. For more information, see
“Troubleshoot Model Upgrade for R2020b”.

To communicate with big-endian architecture systems, use the Byte Reversal/Change Endianess
block. Your model does not need this block for communicating between 80x86-based computer
systems running either the Simulink Real-Time RTOS or the Microsoft Windows operating system.

The blocks work from within the Simulink environment and from a real-time application running
under the Simulink Real-Time system. Be careful about transmitting data between a Simulink
simulation and a real-time application or using two Simulink models. A Simulink model is not a real-
time model and can run several times faster or slower than a real-time application. Set the sample
time of the UDP Send and UDP Receive blocks and the sample time of the Simulink model so that the
blocks can communicate.

• You cannot configure two UDP Receive blocks with the same local port. For example, two UDP
Receive blocks cannot have the same local port and different IP addresses.

• You cannot configure two UDP Send blocks with the same local port. For example, two UDP Send
blocks cannot have the same local port and different IP addresses.

See Also
UDP Send | UDP Receive

Related Examples
• “Target to Host Transmission by Using UDP”

More About
• “UDP Transport Protocol” on page 10-2

 UDP Communication Setup

10-9

https://www.speedgoat.com/

UDP and Variable-Size Signals
The Simulink Real-Time UDP sublibrary does not directly support variable-size signals. The UDP Send
block input port accepts only fixed-size signals.

To send variable-size signals though UDP, determine the maximum number of elements of a fixed-size
input signal that you expect to connect to the block. Use the second input, Length, to specify the
number of elements of this input signal to send through UDP.

This example configures the MATLAB Function block to accept a variable-size signal and maps that
signal to a fixed-size output signal. It outputs the number of relevant elements. You can output the
fixed-size output signal and number of elements to the inputs of the UDP Send block.

1 To accept a variable-size input signal, create a MATLAB Function block. MATLAB Function block
inputs inherit their size, which can be variable-size.

2 In the MATLAB Function block, enter code like the following code. In this code, the maximum
size of the variable-size input signal is 9.

function [y,y_length] = fcn(u)
%#codegen
y = uint8(zeros(9,1));
y_length = length(u);
for a = 1:y_length
 y(a) = u(a);
end

3 Specify the maximum size of the output y.

a Open the Symbols pane. In the Modeling tab, in the Design section, click Symbols Pane.
b Right-click the variable y and click Inspect to open the Property Inspector.
c Enter the maximum size of the input signal into the corresponding Size property for y. For

this example, the size value is 9.
4 Provide a variable-size signal source to the MATLAB Function block.

10 Real-Time UDP Communication Support

10-10

See Also
UDP Send | MATLAB Function

 UDP and Variable-Size Signals

10-11

Real-Time UDP Blocks

11

UDP Multicast Receive
Receive data over UDP network from a remote device
Library: Simulink Real-Time / IP

Description
The UDP Multicast Receive block receives multicast data over a UDP network from a remote device.
It can receive data by using the connection between the development and target computers or by
using a dedicated Ethernet card. If you use a dedicated Ethernet card, use the Speedgoat
configuration utility to configure the dedicated Ethernet board.

The UDP Multicast Receive block operates in a real-time application running on a target computer.
The block does not operate in a model simulation on a development computer.

A maximum of 20 multicast groups can be joined. This number is determined as a product of the
group address and group interface fields on the block mask.

Ports
Output

Data — Data received
vector

Vector of uint8 containing data received over the UDP network. If no new packet is received, the
data values are held. To determine whether a new packet has been received, use the Length output
port.
Data Types: uint8

Length — Number of bytes received
double

Number of bytes in the new packet received, otherwise 0. If more bytes are received than can be
output through the receive port with width defined by Receive width, the excess bytes are
discarded.

Parameters
General Parameters

Bind address — Bind IP address for receiving multicast data
0.0.0.0 (default)

The Bind address can be either 0.0.0.0 or a multicast address. When Bind address is set to
0.0.0.0, the block binds to INADDR_ANY, which enables the socket to receive datagrams on all

11 Real-Time UDP Blocks

11-2

https://www.speedgoat.com/

interfaces. This specification enables the Group address field on the block mask. When Bind
address is set to a multicast IP address, the Group address field is hidden on the block mask.

If the Bind address is set to 0.0.0.0, the block also can receive unicast messages if the block is
configured on a group interface over which unicast messages are sent. This unicast message receive
occurs because address 0.0.0.0 allows listening to any messages on all interfaces of the target
computer. To avoid this unicast message receive operation, use a multicast address as a bind address.
Using that setup, the block only receives multicast messages and does not receive unicast messages.
Programmatic Use
Block Parameter: bindAddress

Local port — Destination UDP port to receive data
1–65535

Specifies UDP port to receive data.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.
Programmatic Use
Block Parameter: localPort

Receive width — Width of Data output vector
16 (default) | 1–65504

Determines the width of the Data output vector. If this value is less than the number of bytes in the
received packet, the excess bytes are discarded.
Programmatic Use
Block Parameter: rcvWidth

Group address — Multicast group to join
{} (default) | {'x.x.x.x'} | dotted decimal character vector

This field is hidden when the bind address is a multicast address. Enter a valid IP address as a dotted
decimal character vector, for example, {'224.0.0.0'}. One or more group addresses can be
specified.

The UDP Multicast Receive block issues an error at model update if the group IP address is not a
valid multicast address in the range 224.0.0.0 through 239.255.255.255.
Example: {'224.100.1.1'}
Example: {'224.100.1.1', '224.100.1.2'}
Programmatic Use
Block Parameter: multicastAddress

Group interface — Local IP interface from which to receive data
{} (default) | {'x.x.x.x'} | dotted decimal character vector

The Group interface IP address specifies the interfaces over which incoming multicast messages
should be received. When the bind address is 0.0.0.0, the multicast groups specified in the field
Group address receive messages over the specified group interface or interfaces. When the bind
address is a multicast address, that address receives messages over the specified group interface or
interfaces. Enter a valid interface IP address as a dotted decimal character vector, for example,
{'192.168.7.5'}. You can also use a MATLAB expression that returns a valid IP address as a
character vector. One or more group interfaces can be specified.

 UDP Multicast Receive

11-3

Example: {'224.100.1.1'}
Example: {'224.100.1.1', '224.100.1.2'}

Programmatic Use
Block Parameter: multicastInterface

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
UDP Receive | UDP Send

Topics
“UDP Transport Protocol” on page 10-2

11 Real-Time UDP Blocks

11-4

UDP Receive
Receive data over UDP network from a remote device
Library: Simulink Real-Time / IP

Description
The UDP Receive block receives data over a UDP network from a remote device. It can receive data
by using the connection between the development and target computers or by using a dedicated
Ethernet card. If you use a dedicated Ethernet card, use the Speedgoat configuration utility to
configure the dedicated Ethernet board.

The parameter Local IP address applies when the block executes in a real-time application on a
target computer or in a model simulation on a development computer. If your model is running in
Simulink on the development computer, you can use this block to receive data to a remote device. In
this case, the Windows operating system determines the network connection.

Ports
Output

Data — Data received
vector

Vector of uint8 containing data received over the UDP network. If no new packet is received, the
data values are held. To determine whether a new packet has been received, use the Length output
port. If you enable the Enable Simulink messages parameter, the data type is UDP_Packet. This
data type consists of:

• IP_Address: DataType: uint8, Complexity: real, Dimensions: [4 1]
• IP_Port: DataType: uint16, Complexity: real, Dimensions: 1
• Length: DataType: uint16, Complexity: real, Dimensions: 1
• Data: DataType: uint8, Complexity: real, Dimensions: [75 1]

Data Types: uint8 | UDP_Packet

Length — Number of bytes received
double

This port is available when you disable the Enable Simulink messages parameter. The Length is
the number of bytes in the new packet received, otherwise 0. If more bytes are received than can be
output through the receive port with width defined by Data width, the excess bytes are discarded.

 UDP Receive

11-5

https://www.speedgoat.com/

Parameters
General Parameters

Use host-target connection — Use Ethernet connection between development and
target computers
'off' (default) | 'on'
Dependency

When you select this parameter, it deactivates the Local IP address parameter and excludes the
ports 1 through 1023 and 5500 through 5560 from use by UDP.
Programmatic Use
Block Parameter: useHostTargetConn

Local IP address — Destination IP address for receiving data
Use host-target connection (default)

When Local IP address is set to Use host-target connection, the block uses the connection
between the development and target computers. Use 0.0.0.0 to bind to INADDR_ANY, which
enables the socket to receive broadcast datagrams.
Programmatic Use
Block Parameter: ipAddress

Local port — Destination UDP port to receive data
1–65535

Specifies UDP port to receive data.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.
Programmatic Use
Block Parameter: localPort

Receive width — Width of Data output vector
1–65504

Determines the width of the Data output vector. If this value is less than the number of bytes in the
received packet, the excess bytes are discarded.
Programmatic Use
Block Parameter: rcvWidth

Receive from any source — Causes receiver to accept data from any IP address
on (default) | off

When Receive from any source is on, the block receives data from any accessible IP address. When
it is off, the block receives data from only the address that you specify in From IP address.

To make the From IP address parameter visible, clear the Receive from any source check box.
Programmatic Use
Block Parameter: rcvFmAny

From IP address — Source from which to receive data
x.x.x.x

11 Real-Time UDP Blocks

11-6

Enter a valid IP address as a dotted decimal character vector, for example, 192.168.7.2. You can
also use a MATLAB expression that returns a valid IP address as a character vector.

The address 255.255.255.255 is an invalid IP address.

To make this parameter visible, clear the Receive from any source check box.

Programmatic Use
Block Parameter: fmAddress

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sampleTime

Enable Simulink messages — Data as messages
off (default) | on

The Enable Simulink messages directs the block to treat data as messages. When enabled, the Length
port is removed.

Programmatic Use
Block Parameter: MessageOut

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
UDP Multicast Receive | UDP Send

Topics
“UDP Transport Protocol” on page 10-2

 UDP Receive

11-7

UDP Send
Send data over UDP network to a remote device
Library: Simulink Real-Time / IP

Description
The UDP Send block sends data over a UDP network to a remote device. The block can send data by
using the connection between the development and target computers or by using a dedicated
Ethernet card. If you use a dedicated Ethernet card, use the Speedgoat configuration utility to
configure the dedicated Ethernet board. One of the settings provided by this utility is the Default
Gateway setting. When using the UDP Send block to broadcast to 255.255.255.255, the IP interface
for broadcast is based on this Default Gateway setting.

To broadcast to all devices on the local subnetwork, set To IP address to 255.255.255.255.
Otherwise, set To IP address to a valid IP address.

For unicasting, broadcasting and multicasting, the parameters Local IP address and Local port are
optional. The Local IP address applies when the block executes in a real-time application on a target
computer or in a model simulation on a development computer. If your model is running in Simulink
on the development computer, you can use this block to transmit data to a remote device. In this case,
the Windows operating system determines the network connection.

Ports
Input

Data — Data to transmit
vector

Vector of uint8 containing data to transmit over the UDP network. To determine how many bytes of
data to transmit, use the Length input port. If you enable the Enable Simulink messages
parameter, the data type is UDP_Packet. Use the slrealtime.createUDPPacketBusObj function
to create the Simulink.Bus type Ethernet_Packet. This data type consists of:

• IP_Address: DataType: uint8, Complexity: real, Dimensions: [4 1]
• IP_Port: DataType: uint16, Complexity: real, Dimensions: 1
• Length: DataType: uint16, Complexity: real, Dimensions: 1
• Data: DataType: uint8, Complexity: real, Dimensions: [75 1]

Data Types: uint8 | UDP_Packet

Length — Number of bytes of data to transmit
double

11 Real-Time UDP Blocks

11-8

https://www.speedgoat.com/

This port is available when you disable the Enable Simulink messages parameter. The Length
determines the number of bytes of data to transmit. Specify the width of the Data vector as the
maximum number of bytes that you expect to transmit.

Parameters
Use host-target connection — Use Ethernet connection between development and
target computers
'off' (default) | 'on'
Dependency

When you select this parameter, it deactivates the Local IP address parameter and excludes the
ports 1 through 1023 and 5500 through 5560 from use by UDP.
Programmatic Use
Block Parameter: useHostTargetConn

To IP address — IP address of target device
10.10.10.10 (default) | x.x.x.x

Specifies IP address of target device. To broadcast to all devices on the local subnetwork, send to
255.255.255.255.
Programmatic Use
Block Parameter: toAddress

To port — UDP port of target device
34 (default) | 1–65535

Specify the UDP port of target device. With To IP address, this parameter defines the destination of
the data transmission.
Programmatic Use
Block Parameter: toPort

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.
Programmatic Use
Block Parameter: sampleTime

Enable Simulink messages — Data as messages
off (default) | on

The Enable Simulink messages directs the block to treat data as messages. When enabled, the Length
port is removed.
Programmatic Use
Block Parameter: MessageIn

Advanced Parameters

Local IP address — Source IP address for sending data
no value (default) | x.x.x.x

 UDP Send

11-9

When Local IP address is set to Use host-target connection, the block uses the connection
between the development and target computers. When To IP address is specified as a multicast
address, the local IP address is used to determine the outbound interface over which multicast
datagrams are sent. The default value for the Local IP address field is no value. This empty field
means that the operating system chooses the Local IP address for UDP transmission.

Programmatic Use
Block Parameter: ipAddress

Local port — Source UDP port to transmit data
no value (default) | 0–65535 | -1

Specifies local UDP port to transmit data.

Ports 1 through 1023 and 5500 through 5560 are reserved for Simulink Real-Time communications.

The value 0, −1, or no value mean that the block transmits data by using any available port.

Programmatic Use
Block Parameter: localPort

Version History
Introduced in R2020b

Changed Parameters Local IP Address and Local Port

The parameters for the UDP Send block have changed. For unicasting, broadcasting, and
multicasting, the parameters Local IP address and Local port are optional.

Added Multicast Support

The UDP Multicast Receive block was added, and the UDP Send block has multicast support. These
blocks provide multicast message support for the UDP communications protocol.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
UDP Multicast Receive | UDP Receive | slrealtime.createUDPPacketBusObj

Topics
“UDP Transport Protocol” on page 10-2

11 Real-Time UDP Blocks

11-10

Model-Based Ethernet Communications
Support

12

Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive
Blocks

This example shows how to use Ethernet blocks to send and receive Ethernet packets on a target
computer.

On the development computer, a UDP Send block sends a sample packet. On the target computer, this
packet is received by an Ethernet Receive block, individual bytes in the payload are manipulated, and
the resulting payload is sent out of the target computer by an Ethernet Send block.

The Ethernet blocks work only on the target computer.

These blocks can work in the default signal input/output mode and a message input/output mode.
Both modes are shown in this example.

Set Up Ethernet Send-Receive Model

Open the target model slrt_ex_ethernetSendReceive.

mdl1 = 'slrt_ex_ethernetSendReceive';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',mdl1));

The target model requires a valid Interface Name parameter value in the two Receive blocks and
the two Send blocks. You can obtain this information on the target computer by using the QNX
Neutrino RTOS ifconfig command.

This example uses interface name wm0 for the target IP address '192.168.7.5'.

Enter the interface name wm0 into the four blocks in the model:

targetIface = 'wm0';
set_param('slrt_ex_ethernetSendReceive/Ethernet Receive', 'InterfaceName', targetIface)

12 Model-Based Ethernet Communications Support

12-2

set_param('slrt_ex_ethernetSendReceive/Ethernet Receive1', 'InterfaceName', targetIface)
set_param('slrt_ex_ethernetSendReceive/Ethernet Send', 'InterfaceName', targetIface)
set_param('slrt_ex_ethernetSendReceive/Ethernet Send1', 'InterfaceName', targetIface)

Operations in the Ethernet Send-Receive Real-Time Application

Every packet sent from the development computer to the target computer is received by each
Ethernet Receive block on the target.

The two Receive and corresponding Send blocks demonstrate the operation in signal mode and
message mode, where Simulink messages represent the packets.

In signal mode, 'slrt_ex_ethernetSendReceive/Subsystem ' uses Simulink blocks to add a 802.1Q
VLAN tag 32 and send it back to the host at a port incremented by 1. If the original sender port was
8001, the loopback destination port is 8002.

In the messages mode, slrt_ex_ethernetSendReceive/MATLAB System Object receives the
packets. For each packet it then creates three new packets with the VLAN tags 24, 25, and 26.

Manipulating the Ethernet Header

For details about Ethernet header structure, refer to the standards document for IEEE 802.1Q.

For details about the IPv4 header, refer to RFC 791 for Internet Protocol https://
datatracker.ietf.org/doc/html/rfc791

These changes to the header occur in the Subsystem and the System object:

1 Switch source and destination MAC address: Swap bytes 1-6 with bytes 7-12.
2 Switch source and destination IP Address: Swap bytes 27-30 with bytes 31-34.
3 Switch source and destination port numbers: Swap bytes 35-36 with bytes 37-38.
4 Increment the new destination port number by 1: Add 1 to the value of byte 38.
5 Disable checksum verification: Set bytes 41-42 to 0. Without this change, the packets that are

sent back to the development computer would be discarded, since checksum value would be
incorrect. For details on checksum verification including recalculating new checksums, refer to
RFC: 791 for Internet Protocol.

6 Add 802.1Q VLAN tag: IEEE 802.1Q adds a 4-byte VLAN tag between the Source/Destination
MAC address and Length/Type fields of an Ethernet frame to identify the VLAN to which the
frame belongs.

For the VLAN tags:

1 Make space for the VLAN tag by shifting bytes 13 onward to the right by 4 to the byte location
starting at 17.

2 Insert the VLAN tag at byte locations 13-16. For example, to add tag 24, insert 0x81 0x00 0x00
0x18. Here the first 2 bytes correspond to a Tag protocol identifier (TPID), which is a 16-bit field
set to a value of 0x8100 to identify the frame as an IEEE 802.1Q-tagged frame. The other 2 bytes
set the Tag control information (TCI) to 0x0018, which includes the VLAN Identifier that
corresponds to 24.

Open and Set Up Packet Source Model on Development Computer

Open model slrt_ex_udpsend. Set the IP address.

 Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

12-3

https://datatracker.ietf.org/doc/html/rfc791
https://datatracker.ietf.org/doc/html/rfc791

developmentIP = '192.168.7.2';
mdl2 = 'slrt_ex_udpsend';
open_system(fullfile(matlabroot,'toolbox','slrealtime','examples',mdl2));
set_param('slrt_ex_udpsend/UDP Receive1', 'ipAddress', developmentIP)

This model uses UDP blocks to send one packet out when the execution time is 2 seconds.

Set the To IP address parameter on slrt_ex_udpsend/SendPacketSubsystem/UDP Send to
the IP address of the target computer.

targetIP = '192.168.7.5';
set_param('slrt_ex_udpsend/SendPacketSubsystem/UDP Send', 'toAddress', targetIP)

Run Ethernet Send-Receive Real-Time Application on Target Computer

Run the target model on the target using the Run on Target button. Or, in the MATLAB Command
Window, type:

evalc('slbuild(mdl1)');
tg = slrealtime;
load(tg,mdl1)
start(tg)

Simulate the UDP Send Model on the Development Computer

Simulate the model.

12 Model-Based Ethernet Communications Support

12-4

set_param('slrt_ex_udpsend', 'SimulationCommand', 'start')

Open Simulink Data Inspector

Open the Simulation Data Inspector and observe the new packets created on the target computer. In
the MATLAB Command Window, type:

Simulink.sdi.view;

The Simulation Data Inspector shows that four packets are received by the UDP Receive block
through four instances of the data length changing to five (the UDP packet size).

Every simulation sends out just one packet at time = 2 seconds.

 Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

12-5

The Ethernet send-receive real-time application responds with four packets, which contain the same
payload but with VLAN tags 24, 25, 26, and 32.

Windows does not expose the VLAN tags to applications. Due to this using a packet capture program
such as Wireshark does not show VLAN tags.

The development computer model shows four UDP packets were received. These are UDP blocks, and
Ethernet header information is not output.

For Windows systems that have connections that block the VLAN tag (such as VM Ethernet
connections or a network interface between the development and target computers), these
connections may prevent the packets from appearing on the output display.

One way to see the tags is by using QNX Neutrino RTOS tcpdump command on the target computer
while logged in as user root by using password root. Use the command:

tcpdump -i <targetIface> -v -e vlan

For targetIface, use the interface name wm0 from the Set Up Ethernet Send-Receive Model
section.

Close Models

bdclose('all');

12 Model-Based Ethernet Communications Support

12-6

Ethernet Blocks

13

Ethernet Receive
Receive Ethernet packets from Simulink Real-Time target computer
Library: Simulink Real-Time / IP / Ethernet

Description
The Ethernet Receive block enables you to receive Ethernet packets on a Simulink Real-Time target
computer. The block receives the packet from the Ethernet interface (device) that you select on the
target computer.

Ports
Output

Data — Outport for Ethernet packet
Simulink message

Connect the Ethernet packet signal from this port to the model. If you enable the Enable Simulink
messages parameter, the data type is Ethernet_Packet. This data type consists of:

• Data: DataType: uint8, Complexity: real, Dimensions: [64 1]
• Length: DataType: uint8, Complexity: real, Dimensions: 1

Data Types: uint8 | Ethernet_Packet

Length — Number of bytes received
double

This port is available when you disable the Enable Simulink messages parameter. The Length is
the number of bytes in the new packet received, otherwise it is 0.
Data Types: double

Parameters
Interface Name — Target computer Ethernet interface name
wm0 | wm1 | character vector

The Interface Name is the name of the target computer Ethernet interface. Use the Speedgoat
Ethernet Configuration Tool to identify the Ethernet index (interface) on the target computer.

Programmatic Use
Block Parameter: InterfaceName

Data Width — Data port width in bytes
64 (default) | integer

13 Ethernet Blocks

13-2

The Data Width is the width of the Data port in bytes. Ethernet packets that are shorter than this
width are padded with zeros.

Programmatic Use
Block Parameter: DataWidth

Enable Simulink messages — Data as messages
off (default) | on

The Enable Simulink messages directs the block to treat data as messages. When enabled, the Length
port is removed.

Programmatic Use
Block Parameter: MessageOut

Maximum messages in a time step — Limit packets per time step
1 (default) | integer

The Maximum messages in a time step selects the maximum number of packets that the block
outputs for each time step.

Programmatic Use
Block Parameter: MaxMessagesPerStep

Capture filter — Filter on received packets
character vector

The Capture filter selects which packets to receive. If no filter is provided, all packets are received.
For information about capture filter syntax, see the Expressions section in the tcpdump page in the
QNX Neutrino documentation. This example filter captures packets that are addressed to destination
port 9001.

dst port 9001

Programmatic Use
Block Parameter: FilterString

Sample Time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: SampleTime

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 Ethernet Receive

13-3

https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/t/tcpdump.html%23tcpdump__Expressions
https://www.qnx.com/developers/docs/7.1/#com.qnx.doc.neutrino.utilities/topic/t/tcpdump.html

See Also
Ethernet Send

13 Ethernet Blocks

13-4

Ethernet Send
Send Ethernet packets from Simulink Real-Time target computer
Library: Simulink Real-Time / IP / Ethernet

Description
The Ethernet Send block enables you to send an Ethernet packet that you construct by using
Simulink blocks or a MATLAB Function block and connects this signal to the Data inport. This input is
fully customizable. The block sends the packet to the Ethernet interface (device) that you select on
the target computer.

Ports
Input

Data — Inport for Ethernet packet
signal input for constructed Ethernet packet

Connect the constructed Ethernet packet signal from the model to this inport. If you enable the
Enable Simulink messages parameter, the data type is Ethernet_Packet. Use the
slrealtime.createEthernetPacketBusObj function to create the Simulink.Bus type
Ethernet_Packet. This data type consists of:

• Data: DataType: uint8, Complexity: real, Dimensions: [64 1]
• Length: DataType: uint8, Complexity: real, Dimensions: 1

Data Types: uint8 | Ethernet_Packet

Length — Number of bytes of data to transmit
double

This port is available when you disable the Enable Simulink messages parameter. The Length
determines the number of bytes of data to transmit. Specify the width of the Data vector as the
maximum number of bytes that you expect to transmit.
Data Types: double

Parameters
Interface Name — Target computer interface name
wm0 | wm1 | character vector

The Interface Name is the name of the target computer Ethernet interface. Use the Speedgoat
Ethernet Configuration Tool to identify the Ethernet index (interface) on the target computer.

 Ethernet Send

13-5

Programmatic Use
Block Parameter: InterfaceName

Overwrite source MAC address — Replace source MAC Address with MAC address from
Data port
off (default) | on

If enabled, the source MAC address in the sent packets is overwritten by the MAC address from the
Data port. If disabled (default), the source MAC address in the sent packets is the actual MAC
address of the target computer.

Programmatic Use
Block Parameter: OverwriteSrcMACAddress

Enable Simulink messages — Data as messages
off (default) | on

The Enable Simulink messages directs the block to treat data as messages. When enabled, the Length
port is removed.

Programmatic Use
Block Parameter: MessageIn

Sample Time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: SampleTime

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Ethernet Receive | slrealtime.createEthernetPacketBusObj

13 Ethernet Blocks

13-6

SAE J1939 Blocks Library

7

SAE J1939

14

SAE J1939 Blocks
The Simulink Real-Time J1939 blocks enable you to send and receive messages over a FIFO-mode
CAN network by using the SAE J1939 message protocol. See “CAN”.

Before you start, provide a J1939 database in .dbc format.

See Also

More About
• “CAN”

14 SAE J1939

14-2

SAE J1939 Blocks

15

J1939 Network Configuration
Define J1939 network configuration name and database file
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Network Configuration block is where you define a configuration name and specify the
associated user-supplied J1939 database. You can include more than one block per model, each
corresponding to a unique configuration on the CAN bus.

To use this block, you must have a license for both Vehicle Network Toolbox™ and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see the Simulink documentation.

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Parameters
Configuration name — Define a name for this J1939 network configuration
ConfigX (default) | character vector

The default value is ConfigX, where the number X increases from 1 based on the number of existing
blocks.

Database File — Specify the J1939 database file name relative to the current folder
not set (default) | character vector

An example file name, enter J1939.dbc if the file is in the current folder; otherwise enter the full
path with the file name, such as C:\work\J1939.dbc.

The database file defines the J1939 parameter groups and nodes. This file must be in the DBC file
format defined by Vector Informatik GmbH.

Version History
Introduced in R2015b

15 SAE J1939 Blocks

15-2

https://www.mathworks.com/support/requirements/supported-compilers.html

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Transmit | J1939 Node Configuration

 J1939 Network Configuration

15-3

J1939 Node Configuration
Configure J1939 node with address and network management attributes
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Node Configuration block is where you define a node and associate it with a specific
network configuration. Its Message information is read from the database for that configuration,
unless you are creating and configuring a custom node.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration”.

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Output

Address — Returns the effective address of the node
int8

This optional output port exists when you select the Output current node address check box in the
dialog box.

AC Status — Indicates the success (1) or failure (0) of the node’s address claim
0 | 1

This optional output port exists when you select the Output address claim status check box in the
dialog box.

Parameters
Config name — ID of the J1939 network configuration to associate with this node
ConfigX (default) | character vector

To access the corresponding J1939 database, use this ID.

15 SAE J1939 Blocks

15-4

https://www.mathworks.com/support/requirements/supported-compilers.html

Node name — name of this J1939 node
NodeX (default) | character vector

The available list shows none if no J1939 network configuration is found or no node is defined in the
associated database. If you are creating a custom node, the node name must be unique within its
J1939 network configuration.

Message — Nine network attributes as defined by the database file consistent with the
J1939 protocol
vector array

Unless you are defining a custom node, these parameters are read-only:

• Allow arbitrary address — Allow/disallow the node to switch to an arbitrary address if the
station address is not available. If this option is off and the node loses its address claim, the node
goes silent.

Node Address — Station address, decimal, 8-bit.
• Industry Group — Decimal, 3-bit.
• Vehicle System — Decimal, 7-bit.
• Vehicle System Instance — Identifies one particular occurrence of a given vehicle system in a

given network. If only one instance of a certain vehicle system exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 4-bit.

• Function ID — Decimal, 8-bit.
• Function Instance — Identifies the particular occurrence of a given function in a vehicle system

and given network. If only one instance of a certain function exists in a network, then this field
must be set to 0 to define it as the first instance. Decimal, 5-bit.

• ECU Instance — This 3-bit field is used when multiple electronic control units (ECU) are involved
in performing a single function. If only one ECU is used for a particular controller application
(CA), then this field must be set to 0 to define it as the first instance.

• Manufacturer Code — Decimal, 11-bit.
• Identity Number — Decimal, 21-bit.

Sample time — Simulation refresh rate
0.01 (default) | double

Specify the sampling time of the block during simulation. This value defines the frequency at which
the J1939 Node Configuration updates its optional output ports. If the block is inside a triggered
subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB variable
for sample time. The default value is 0.01 simulation seconds. For information about simulation
sample timing, see “What Is Sample Time?”.

Output current node address — Enable or disable the Address port display
off (default) | on

Enable or disable the Address output port to show the effective address. The effective address is
different from the predefined station address. If Allow arbitrary address is selected, a name conflict
occurs, and the current node has lower priority. The output signal is a double value from 0 to 253.
This port is disabled by default.

Output address claim status — Enable or disable the address claim AC Status display
off (default) | on

 J1939 Node Configuration

15-5

Enable or disable the address claim AC Status output port to show the success of an address claim.
The output value is binary, 1 for success or 0 for failure. This port is disabled by default.

Version History
Introduced in R2015b

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Transmit | J1939 Network Configuration

15 SAE J1939 Blocks

15-6

J1939 CAN Transport Layer
Generate and consume J1939 messages that are transported by CAN hardware
Library: Simulink Real-Time / J1939

Description
The J1939 CAN Transport Layer block handles CAN messages that your model transmits or receives
by using Simulink Real-Time CAN library blocks.

Connect the input side of the block to a block that receives CAN messages. Connect the output side of
the block to a block that transmits the J1939 messages over CAN. Set up the transmitting block so
that a CAN message is sent only when an J1939 message is available. Otherwise, the block sends 0
byte data when J1939 messages are not available, causing undefined behavior.

Ports
Input

CAN Msg — CAN MESSAGE structures being consumed
vector

Vector of CAN MESSAGE structures being consumed.

N — Number of messages
integer

Number of messages in the vector.

Output

CAN Msg — CAN MESSAGE structures being generated
vector

Vector of CAN MESSAGE structures being generated.

N — Number of messages
integer

Number of messages in the vector.

Version History
Introduced in R2020b

 J1939 CAN Transport Layer

15-7

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
J1939 Receive | J1939 Transmit | J1939 Node Configuration | J1939 Network Configuration

15 SAE J1939 Blocks

15-8

J1939 Receive
Receive J1939 parameter group messages
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Receive block receives a J1939 message from the configured CAN device. The J1939
database file defines the nodes and parameter groups. You specify the J1939 database by using the
J1939 Network Configuration block.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration”.

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Output

Data — Data output
double

Depending on the J1939 parameter group defined in the J1939 database file, the block can have
multiple data output signal ports. The block output data type is double.

Msg Status — Message received status
0 | 1

When you select the Output New Message Received status check box in the parameters dialog,
this port outputs 1 when a new message is received from the CAN bus. Otherwise, this port outputs
0.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate. This value is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified

 J1939 Receive

15-9

https://www.mathworks.com/support/requirements/supported-compilers.html

J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Parameter Group — Parameter group number (PGN) and name from database
character vector

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

If you change any parameter group settings within your J1939 database file, open the J1939 Receive
block dialog box and select the same Parameter Group and click OK or Apply.

Signals — Signals defined in the parameter group
array of character vectors

Signals that are defined in the parameter group. The Min and Max settings are read from the
database, but by default the block does not clip signal values that exceed this range.

Source Address Filter — Filter messages based on source address
Allow all (default) | Allow only

Filter messages based on source address are:

• Allow only — Specify a single source address.
• Allow all — Accepts messages from any source address. This option is the default.

Destination Address Filter — Filter out message based on destination address
global and node specific (default) | global only | node specific only

Filter out a message based on the destination address:

• global only — Receive only broadcast messages.
• node specific only — Receive only messages addressed to this node.
• global and node specific — Receive all broadcast and node-addressed messages. This

option is the default.

Sample time — Simulation refresh rate
0.01 (default) | double

The simulation refresh rate. Specify the sampling time of the block during simulation. This value
defines the frequency at which the J1939 Receive block updates its output ports. If the block is inside
a triggered subsystem or inherits a sample time, specify a value of -1. You can also specify a MATLAB
variable for sample time. The default value is 0.01 simulation seconds. For information about
simulation sample timing, see “What Is Sample Time?”.

Output New Message Received status — Create a Msg Status output
0 (default) | 1

15 SAE J1939 Blocks

15-10

Select this check box to create a Msg Status output port. Its output signal indicates a new incoming
message, showing 1 for a new message received, or 0 when there is no new message.

Version History
Introduced in R2015b

See Also
J1939 CAN Transport Layer | J1939 Transmit | J1939 Network Configuration | J1939 Node
Configuration

 J1939 Receive

15-11

J1939 Transmit
Transmit J1939 message
Library: Simulink Real-Time / J1939 Communication

Vehicle Network Toolbox / J1939 Communication

Description
The J1939 Transmit block transmits a J1939 message. The J1939 database file defines the nodes and
parameter groups. You specify the J1939 database by using the J1939 Network Configuration block.

To use this block, you must have a license for both Vehicle Network Toolbox and Simulink software.

The J1939 communication blocks support the use of Simulink accelerator and rapid accelerator
modes. You can speed up the execution of Simulink models by using these modes. For more
information on these modes, see “Design Your Model for Effective Acceleration”.

The J1939 communication blocks also support code generation that have limited deployment
capabilities. Code generation requires a C++ compiler that is compatible with the code generation
target. For the current list of supported compilers, see Supported and Compatible Compilers.

Ports
Input

Data — Input data
signal

Depending on the J1939 parameter group and signals defined in the J1939 database file, the block
can have multiple data input ports.

Trigger — Enables the transmission of message
0 | 1

Enables the transmission of the message for that sample. A value of 1 specifies to send, a value of 0
specifies not to send.

Parameters
Config name — Name of the J1939 network configuration to associate
ConfigX (default) | character vector

The name of the J1939 network configuration to associate with. This is used to access the
corresponding J1939 database. Only the nodes defined in the model and associated with the specified
J1939 network configuration appear in the Node name list. The option shows none if no J1939
network configuration is found.

15 SAE J1939 Blocks

15-12

https://www.mathworks.com/support/requirements/supported-compilers.html

Node name — Name of the J1939 node
NodeX (default) | character vector

The name of the J1939 node. The drop-down list includes all the nodes in the model, both custom
nodes and nodes from the database.

Parameter Group — Group number (PGN) and name
int8

The parameter group number (PGN) and name from the database. The contents of this list vary
depending on the parameter groups that the J1939 database file specifies. The default is the first
parameter group for the selected node.

If you change any parameter group settings within your J1939 database file, you must then open the
J1939 Transmit block dialog box and select the same Parameter Group, then click OK or Apply to
update the parameter group information in the block.

Signals — Signals defined in parameter group
array of character vectors

Signals defined in the parameter group. The Min and Max settings are read from the database, but
by default the block does not clip signal values that exceed this range.

PG Priority — Priority of the parameter group
int8

Priority of the parameter group, read from the database. This priority setting resolves clashes of
multiple parameter groups transmitting on the same bus at the same time. If a conflict occurs, the
priority group with lower priority (higher value) will refrain from transmitting. The value can range
from 0 (highest priority) to 7 (lowest).

Destination Address — Name of the destination node
int8

The name of the destination node. The default is the first node defined in the database, otherwise
Custom.

For a custom destination address, you can specify 0–253 for the address of the destination node. For
broadcasting to all nodes, use the Custom Destination Address setting with an address of 255.

Sample time — Simulation transmit rate
-1 (default) | double

The simulation transmit rate, specified as the sampling time of the block during simulation. This value
defines the frequency at which the J1939 Transmit block transmits messages. The default value of -1
is used when the block is inside a triggered subsystem or inherits a sample time. You can also specify
a MATLAB variable for sample time. For information about simulation sample timing, see “What Is
Sample Time?”.

Version History
Introduced in R2015b

 J1939 Transmit

15-13

See Also
J1939 CAN Transport Layer | J1939 Receive | J1939 Network Configuration | J1939 Node
Configuration

15 SAE J1939 Blocks

15-14

Logitech

15

Logitech Blocks

The Simulink Real-Time Logitech blocks support Logitech G29 Steering Wheel functions.

16

Logitech G29 Steering Wheel
Receive Logitech G29 Steering Wheel read data
Library: Simulink Real-Time / Logitech G29

Description
The Logitech G29 Steering Wheel block reads data from a Logitech G29 Steering Wheel (PS3 only).
The block does not support a Stick Shift module.

Ports
Output

Buttons — Status of steering wheel buttons
0 (= unpressed) | 1 (= pressed)

The Buttons output is a vector of Boolean values that indicate the status of buttons on the steering
wheel. The order of the button values in the vector is:

1 Square
2 X
3 Circle
4 Triangle
5 LPaddle
6 RPaddle
7 L2
8 R2
9 L3
10 R3
11 Share
12 Option
13 PS

Data Types: Boolean

Steering — Value of steering wheel position
0 (= left most) | 65535 (= right most)

The Steering output value indicates the position of the steering wheel.
Data Types: uint16

16 Logitech Blocks

16-2

Pedals — Status of throttle, brake, and clutch pedals
0 (= not engaged) | 255 (= fully engaged)

The Pedals output is a vector of values that indicate the status of the throttle, brake, and clutch
pedals. The order of the pedal values in the vector is:

1 Throttle
2 Brake
3 Clutch

Data Types: uint8

Direction — Status of direction pad buttons on steering wheel
0 (= UP) | 2 (= RIGHT) | 4 (= DOWN) | 6 (= LEFT) | 8 (= UNPRESSED)

The Direction output value indicates a button press on the direction pad. When you press the
direction pad in between the pad buttons, intermediate values occur.
Data Types: uint8

Status — Status of communications with steering wheel
0 (default) | negative value

The Status output value indicates successful communications with the steering wheel (0) or
unsuccessful communications (negative value).
Data Types: int32

Parameters
sampleTime — Sample time for steering wheel data
-1 (inherited) (default)

Select the sample time for steering wheel data. The recommended sampleTime is 10ms.

Programmatic Use
Block Parameter: sampleTime

Version History
Introduced in R2018b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
External Websites
Logitech G29 Driving Force Racing Wheel

 Logitech G29 Steering Wheel

16-3

https://www.logitechg.com

LIN

5

LIN Blocks

The Simulink Real-Time LIN blocks support packing signals into frames and unpacking signals from
frames by using information in an LIN description file (LDF).

17

LIN Pack
Pack signals into data frame by using configuration in LIN description file
Library: Simulink Real-Time / LIN

Description
The LIN Pack block packs signals into the data frame by using the configuration in the LIN
description file (LDF). A local interconnect network (LIN) bus can use the packed data. The LIN Pack
block supports LDF version 2.2 and previous.

Ports
Input

in — input data to pack
data

Receives data to pack for the LIN. The number of input ports is allocated based on the selected
frame. The port name is assigned to each port.

Output

lin_data — output LIN data
LIN data

Sends packed LIN data.

Parameters
LDF File Name — File path of LDF
empty (default) | character vector | string scalar

Provides the file path of the LDF. If you do not set this parameter, you cannot use the block.

Programmatic Use
Block Parameter: LDFFileName

Select Frame — LIN frame
None (default) | character vector | string scalar

Selects the LIN frame from selections available in LDF. If you do not select an LDF, the block uses
None.

Programmatic Use
Block Parameter: selectedFrameName

17 LIN Blocks

17-2

Frame ID — LIN frame ID
1 (default) | uint8

Selects the LIN frame ID from selections available in LDF. If you do not select an LDF, the block uses
1.

Programmatic Use
Block Parameter: frameId

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
LIN Unpack

External Websites
Local Interconnect Network (LIN)

 LIN Pack

17-3

https://en.wikipedia.org/wiki/Local_Interconnect_Network

LIN Unpack
Unpack signals from data frame by using configuration in LIN description file
Library: Simulink Real-Time / LIN

Description
The LIN Unpack block unpacks the data frame by using the configuration in the LIN description file
(LDF) and outputs signal data. You can use the unpacked local interconnect network (LIN) bus data
as signal data in the model. The LIN Unpack block supports LDF version 2.2 and previous.

Ports
Input

message_updated — indicates message update
0 (logical false) | 1 (logical true)

When the message_updated value is 1 (logical true), there is a message coming in from the LIN
bus. This block outputs the unpacked signals. When the message_updated value is 0 (logical false),
there is no message updated on the LIN bus, and this block outputs the default value for each signal
defined in the LDF file.

Lin_data_8_bytes — input LIN data to unpack
LIN data

Receives LIN data to unpack.

Output

out — output data
data

Sends unpacked data. The number of the output ports is allocated based on the number of signals in
the selected frame. When a frame is selected, the port name is assigned to each port.

Parameters
LDF File Name — File path of LDF
empty (default) | character vector | string scalar

Provides the file path of the LDF. If you do not set this parameter, you cannot use the block.
Programmatic Use
Block Parameter: LDFFileName

Select Frame — LIN frame
None (default) | character vector | string scalar

17 LIN Blocks

17-4

Selects the LIN frame from selections available in LDF. If you do not select an LDF, the block uses
None.

Programmatic Use
Block Parameter: selectedFrameName

Frame ID — LIN frame ID
1 (default) | uint8

Selects LIN frame ID from selections available in LDF. If you do not select an LDF, the block uses 1.

Programmatic Use
Block Parameter: frameId

Version History
Introduced in R2021b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
LIN Pack

External Websites
Local Interconnect Network (LIN)

 LIN Unpack

17-5

https://en.wikipedia.org/wiki/Local_Interconnect_Network

Logging Blocks Library

7

Logging Blocks

The Simulink Real-Time file logging blocks support logging run data for viewing in the Simulation
Data Inspector.

18

File Log
Write signal data file log on target computer
Library: Simulink Real-Time / Logging

Description
When you enable logging service, the File Log block logs the signal at its input port to the target
computer file system.

For more information about the file logging workflow, see “Signal Logging and Streaming Basics”.

Ports
Input

S — Signal data for file log
scalar | vector | matrix | array | bus | nonvirtual bus

Provides the signal data input for the file log.

Parameters
Decimation — Applies decimation to file log data
1 (default) | integer

The decimation parameter value selects decimation for the samples captured in the file log.

By using the File Log decimation functions, you can tune the decimation parameter programmatically
for the File Log in the model. These functions are:

• getAllFileLogBlocks
• getFileLogDecimation
• setFileLogDecimation

Programmatic Use

decimation

Input Processing — Selects processing mode for file log data
Elements as channels (sample based) (default) | Columns as channels (frame based)

The input processing parameter value selects whether the logged signal data is processed and sent to
the Simulation Data Inspector in sample or frame processing mode. For more information about
sample-based data and frame-based data in the Simulation Data Inspector, see “View Data in the
Simulation Data Inspector”.

18 Logging Blocks

18-2

Programmatic Use

inputProcessing

Version History
Introduced in R2020b

Decimation, Log Retention, and Frame-Based Input

Functions let you get and set decimation values for File Log blocks in a model. Also, functions let you
control when File Log recording starts and stops.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Enable File Log | list | import | discard | getAllFileLogBlocks | getFileLogDecimation |
setFileLogDecimation | startRecording | stopRecording

Topics
“Signal Logging and Streaming Basics”

 File Log

18-3

Enable File Log
Enable or disable file logging of signals on target computer
Library: Simulink Real-Time / Logging

Description
When the input port value is true, the Enable File Log block enables the file logging service on the
target computer so that File Log blocks in the model start recording data. When the input port value
is false, the block disables file logging on the target computer, and the File Log blocks do not record
data.

If a model includes a Enable File Log block, the startRecording function and stopRecording
function only control signal streaming, not File Log logging. In this case, the start(tg)
AutoImportFileLog option does not import data into the Simulation Data Inspector when you use
the stopRecording function or click the Stop Recording button.

For more information about the file logging workflow, see “Signal Logging and Streaming Basics”.

Ports
Input

E — Enable or disable file logging
boolean

Provides enable or disable control over File Log block operation. When the enable input is triggered
by a boolean signal in the model, there are logs created on the target computer. Retention of these
logs depends on the FileLogMaxRuns setting.

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
File Log | list | import | discard | startRecording | stopRecording

Topics
“Signal Logging and Streaming Basics”

18 Logging Blocks

18-4

Profiling Blocks Library

5

Profiling Blocks

The Simulink Real-Time profiling blocks support real-time application execution profiling functions.

19

Enable Profiler
Start and stop execution profiler on target computer
Library: Simulink Real-Time / Profiling

Description
A rising edge on the Enable Profiler block Start input starts the execution profiler. A rising edge on
the Stop input stops the execution profiler. A rising edge on both ports has no effect.

Ports
Input

Start — Starts the profiler
0 | 1

When the Start input changes from 0 to 1, the block starts the profiler.

After the resources required to collect the data become available in the background, the profiler
starts collecting data. Profiler preparation can span several time steps.
Data Types: Boolean

Stop — Stops the profiler
0 | 1

When the Stop input changes from 0 to 1, the block stops the profiler.

If the profiler is still running when the application stops, the profiler stops by itself. You do not have
to trigger the Stop input.

The amount of data collected is limited to 1GB. The profiler stops by itself when it reaches this limit.
Data Types: Boolean

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

19 Profiling Blocks

19-2

See Also
startProfiler | stopProfiler | getProfilerData | resetProfiler | ProfilerData

 Enable Profiler

19-3

Log Event
Log an execution profiling event
Library: Simulink Real-Time / Profiling

Description
When triggered, the Log Event block inserts a user-defined event into the execution profiling event
stream. The user-defined event includes a channel ID, a code number, and a value number. The
channel ID value ranges from 0 to 1023.

Ports
Input

T — Trigger for log event
1..9

When the T (trigger input) changes from 0 to 1 (Rising) or from 1 to 9 (Falling), the block inserts a
user-defined simple event defined by the parameters Channel, Code, and Value into the execution
profiling event stream.
Example: 1

Parameters
Channel — Event channel ID
0 (default) | int

Select the event change ID, for example 500.

Programmatic Use

channel

Code — Event code number
0 (default) | uint32

Select the event code number, for example 200.

Programmatic Use

code

Value — Event value number
0 (default) | uint32

Select the event value number, for example 200.

19 Profiling Blocks

19-4

Programmatic Use

value

Trigger type — Selects trigger signal edge
Rising (default) | Falling | Either

Select the type of signal change that triggers the block. When the T (trigger input) changes from 0 to
1 (Rising) or from 1 to 9 (Falling), the block inserts a user-defined simple event defined by the
parameters Channel, Code, and Value into the execution profiling event stream.

Programmatic Use

trigger

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Enable Profiler

 Log Event

19-5

PTP Precision Time Protocol Blocks
Library

7

PTP Blocks

The Simulink Real-Time PTP blocks support PTP protocol-related functions.

20

Precision Time Protocol

• “Precision Time Protocol” on page 21-2
• “PTP Prerequisites” on page 21-4

21

Precision Time Protocol
Measurement and control systems increasingly use distributed system technologies. To distribute
measurement or control tasks over interconnected computing devices, such systems maintain a
system-wide sense of time. Simulink Real-Time uses the Precision Time Protocol (PTP) to synchronize
the system clock of each target computer to a reference time.

PTP (IEEE® 1588) is a protocol that synchronizes PTP clocks throughout a computer network. The
current version of PTP (IEEE 1588-2008) describes a hierarchical master-slave architecture for clock
distribution.

By design, this protocol is more accurate for local systems than the Network Time Protocol (NTP) and
more robust than the Global Positioning System (GPS). On a local area network, the protocol achieves
PTP clock accuracy in the submicrosecond range, making it suitable for distributed measurement.
When you use this protocol to synchronize Simulink Real-Time applications across multiple target
computers, it can synchronize execution to under 10 µs.

Suppose that you are designing a control system for a wind power plant. To determine the plant
parameters, you attach sensors that acquire the data shown in the diagram.

To record the data and timestamps, connect the sensors to a set of data acquisition target computers.
Interconnect the data acquisition computers through an Ethernet network and a switch that supports
the PTP protocol (a PTP transparent clock or boundary clock). To access the data and timestamps,
connect the target computers to a development computer through another Ethernet network and
switch. On the development computer, run MATLAB to do the data analysis, including:

• Sorting by time the data recorded on the different computers to analyze the event sequence over
time.

• Filtering sensor data that has invalid (unsynchronized) timestamps.
• Integrating values of measured data collected at the same time from sensors connected to
different computers.

21 Precision Time Protocol

21-2

Finally, you build and download the real-time applications to each target computer, run the
applications, and collect and analyze the results at each valid timestamp. You use the results to
design a control system for the wind power generator.

Simulink Real-Time supports the PTP protocol by using the RTOS PTP daemon. The ptpd daemon
implements the Precision Time Protocol (PTP) Version 2 as defined by the IEEE 1588-2008 standard.
For more information about the daemon, see the QNX Neutrino documentation.

To synchronize the target computer PTP clocks:

1 Connect the target computers by using their Intel i210 Ethernet cards.
2 On the master target computer, start the PTP daemon by using the

start(target_object.ptpd) command or the target_object.ptpd.AutoStart property.
3 On the slave target computer, start the PTP daemon by using the

start(target_object.ptpd) command or the target_object.ptpd.AutoStart property.

The PTP slave synchronizes its clock to the PTP master clock. The hardware timestamp from the Intel
i210 Ethernet cards provides IEEE 1588-2008 standard compliant clock synchronization.

To get information about clock synchronization, add an IEEE 1588 Read Parameter block to the
model. This block outputs a Precision Time Protocol parameter value that you select. The parameters
are:

• System time
• Calendar time
• Offset from Master
• Master to Slave Delay
• Slave to Master Delay
• One Way Delay

See Also
Subsystem | IEEE 1588 Read Parameter

More About
• “PTP Prerequisites” on page 21-4

External Websites
• standards.ieee.org

 Precision Time Protocol

21-3

https://www.qnx.com/developers/docs/7.1/index.html#com.qnx.doc.neutrino.utilities/topic/p/ptpd.html
https://standards.ieee.org

PTP Prerequisites
The Simulink Real-Time implementation of PTP enforces specific requirements:

• PTP functionality is available only with a Speedgoat target computer. If you have not installed the
Speedgoat I/O Blockset, attempting to build a real-time application with PTP causes a build error.

• The support for PTP IEEE-1588 is part of the on-board or installed I/O module connectivity of real-
time target machines. After installing the Speedgoat I/O Blockset, you can confirm PTP support by
using the function:

speedgoat.showPtpInterfaces('TargetObject', tg)

See Also
Subsystem | IEEE 1588 Read Parameter

More About
• “Precision Time Protocol” on page 21-2

External Websites
• standards.ieee.org

21 Precision Time Protocol

21-4

https://standards.ieee.org

Precision Time Protocol Blocks

22

IEEE 1588 Read Parameter
Output Precision Time Protocol status parameter values such as target computer system time,
calendar time, and delays
Library: Simulink Real-Time / PTP

Description
The IEEE 1588 Read Parameter block reads the parameter that you select and send its value to the
block output. The block label changes based on the parameter that you select.

You can use the IEEE 1588 Read Parameter block to read the target computer system time even
without a PTPd process running.

Ports
Output Arguments

Output — Output selected by Parameter to read parameter
double | [uint32]

The current parameter to read.

Parameters
Parameter to read — Parameter to display at output
System time (nanosecond) (default) | Calendar time (time_t) | Offset from Clent |
Client to Server Delay | One Way Delay

Specify the parameter to read. Select one of:

• System time (nanosecond) — Current SLRT system time number of nanoseconds, counting
from the current epoch. The output is a double.

• Calendar time (time_t) — Current SLRT calendar time in time_t int32 vector.
• Offset from Client — Time offset in nanoseconds. The output is a double.
• Client to Server Delay — Time delay in nanoseconds. The output is a double.
• One Way Delay — Time delay in nanoseconds. The output is a double.

The Calendar time (time_t) vector contains these parts:

• seconds
• minutes
• hours
• day of the month

22 Precision Time Protocol Blocks

22-2

• month
• year
• day of the week
• day in the year
• daylight saving time

Programmatic Use
Block Parameter: param

Sample time (-1 for inherited) — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time.

Programmatic Use
Block Parameter: sample_time

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Subsystem | IEEE 1588 Read Parameter

Topics
“PTP Prerequisites” on page 21-4

External Websites
standards.ieee.org

 IEEE 1588 Read Parameter

22-3

https://standards.ieee.org

RS232 Serial Blocks Library

5

Serial Communications Support

• “RS-232 Serial Communication” on page 23-2
• “RS-232 Legacy Drivers” on page 23-3

23

RS-232 Serial Communication
The Simulink Real-Time software supports RS-232 serial communication by using the serial ports on
the target computer mainboard as the RS-232 I/O devices. You can initiate RS-232 communication
with these serial ports and the accompanying Simulink Real-Time drivers.

The Simulink Real-Time block library supplies legacy drivers to support RS-232 communication (see
“RS-232 Legacy Drivers” on page 23-3). The composite drivers support RS-232 communication in
asynchronous binary mode. They provide a simple ASCII encode/decode for the send and receive
RS-232 blocks.

These drivers are described as legacy because the library supports legacy RS-232 communications by
using the RTOS resource manager. To use the Legacy Serial Read block and Legacy Serial Write
block, set up the serial ports by using the Legacy Serial Setup block.

Serial Connections for RS-232
The Simulink Real-Time software supports serial communication by using the COM1 and COM2 ports
on the target computer.

Your real-time applications can use these RS-232 ports as I/O devices. With the typical DTE/DCE
configuration of the RS-232 device, the target computer is connected to the device with a null modem
cable.

See Also
ASCII Encode | ASCII Decode | FIFO Read | FIFO Write | FIFO Read HDRS | FIFO Read Binary |
Modem Control | Modem Status | ASCII Decode V2

23 Serial Communications Support

23-2

RS-232 Legacy Drivers
There are components that make up the RS-232 legacy drivers. You can create a model by using
these drivers. These drivers perform RS-232 asynchronous communications.

The Simulink Real-Time software provides legacy drivers that support the target computer (main
board) serial ports.

These drivers encapsulate the functionality of the device by using the Legacy Serial Port block and
the Legacy Serial Port F blocks. For most RS-232 requirements, you can use these RS-232 drivers.
For modem requirements, use the Modem Control block and Modem Status block.

Add RS-232 Blocks
When you want to use the serial ports on the target computer for serial I/O, add RS-232 Legacy Serial
Port or Legacy Serial Port F subsystem blocks to your Simulink model .

Before you start, decide what legacy serial ports you want to use. The example has you configure the
Legacy Serial Port block. To configure this block, first select serial ports.

The following procedure shows how to use the serial ports on the target computer for I/O with the
legacy drivers. It shows a model that uses legacy serial port 1 and legacy serial port 2.

1 Open the Simulink Real-Time block library. You can access the library from the Simulink Library
Browser. In the Simulink Editor, on the Real-Time tab, from the Prepare section, click Library
Browser. In the left pane, double-click Simulink Real-Time, and then click RS232. To open the
library from the MATLAB Command Window, type:

slrealtimelib
2 In the Simulink Real-Time driver block library, double-click the RS232 group block.
3 In the window with blocks for RS-232 legacy drivers, drag an ASCII Encode block to your

Simulink model. This block encodes input for the Legacy Serial Port block XMT port.
4 Configure this block.
5 Drag an ASCII Decode block to your Simulink model. This block decodes output from the Legacy

Serial Port block RCV port.
6 Configure this block.
7 Double-click the Mainboard group block.
8 Drag two Legacy Serial Port blocks to your Simulink model.
9 Double-click the first Legacy Serial Port block.
10 Configure this block for Legacy Serial Port 1
11 Double-click the second Legacy Serial Port block.
12 Configure this block for Legacy Serial Port 2
13 Add a Pulse Generator block and a target Scope block.
14 Configure the Pulse Generator block so that its Pulse type is Sample based.

The dialog box changes to display a Sample time parameter. Enter a Sample time that is
slower than the one you set for Receive Setup.

15 From the Simulink Library Browser, select Sinks. Depending on your configuration, drag one or
more Terminator blocks to your model.

 RS-232 Legacy Drivers

23-3

From the Simulink Library Browser, select Sources. Depending on your configuration, drag the
Ground block to your model.

A pre-constructed example model is available. The slrt_ex_serialbaseboardasciitest
model uses two legacy serial ports. To open this model, in the MATLAB Command Window, type:

open_system(fullfile(matlabroot, 'toolbox', 'slrealtime',...
'examples', 'slrt_ex_serialbaseboardasciitest'))

Your next task is to build and run the real-time application.

Building and Running the Real-Time Application
The Simulink Real-Time and Simulink Coder software create C code from your Simulink model. You
can then use a C compiler to create executable code that runs on the target computer. You must know
how to configure your model to create a real-time application. See “Build and Download Real-Time
Application by Using Run on Target”.

After you add the RS-232 blocks for the main board to your Simulink model and configure your
model, you can build your real-time application.

In the Simulink Editor, on the Real-Time tab, click Run on Target.

Simulink Real-Time RS-232 Reference
• “RS-232 FIFO Read Blocks” on page 23-5
• “RS-232 Signal Data Types” on page 23-6
• “RS-232 Zero Length Messages” on page 23-6

23 Serial Communications Support

23-4

• “RS-232 Control When You Send a Message” on page 23-7

The Simulink Real-Time software supports RS-232 communication by using driver blocks in your
Simulink model.

RS-232 FIFO Read Blocks

There are three kinds of FIFO Read blocks: FIFO Read, FIFO Read HDRS, and FIFO Read Binary. To
develop your model, use the following guidelines:

• Simple data streams — Use the FIFO Read block to read simple data streams. An example of a
simple data stream is one that has numbers separated by spaces and ends with a new-line
character. The FIFO Read block is a simple block that can easily extract these numbers.

• Complicated data streams — Use the FIFO Read HDRS and FIFO Read Binary blocks for more
complicated data streams. A more complicated data stream can be one that contains headers,
messages of varying lengths, or messages without specific terminators. A message header consists
of one or more character identifiers at the beginning of a message that specify what data follows.
ASCII messages normally have a variable length and a terminator. Typically, the messages of a
particular device use the same predefined terminator. Binary messages are normally of fixed
length without a specific terminator.

You can also use the FIFO Read HDRS and FIFO Read Binary blocks to work with devices that can
send different messages at different times.

The input to these FIFO read blocks must be of type serialfifoptr, which is output from F type
Send Receive subsystems.

These examples show instances when you can use the FIFO Read block.

• For an instrument that sends a character vector like this one:

<number> <number> ... <CR><LF>

use the simple FIFO Read block to read the message. Configure the FIFO Read block Delimiter
parameter for a line feed (value of 10). Connect the output to an ASCII Decode block with a format
that separates the numbers and feeds them to the output ports.

• For an instrument that can send one of several different messages, each beginning with a different
fixed character vector, use the FIFO Read HDRS block. For example, a digital multimeter
connected through an RS-232 port sends a voltage and amp reading with messages in this format:

volts <number> <CR><LF>
amps <number> <CR><LF>

Configure the FIFO Read HDRS block Header parameter for the volts and amps headers in a
cell array: {'volts', 'amps'}. Configure the Terminating string parameter for carriage
return (13) and line feed (10): [13 10].

Connect the output to multiple ASCII Decode blocks, one for each header and message. For
examples of how to use this block in a model, see the slrt_ex_serialasciitest and
slrt_ex_serialasciisplit models in matlab/toolbox/slrealtime/examples.

• For an instrument that sends a binary message, you could know the length of each full message,
including the header. Configure the FIFO Read Binary block Header parameter for the headers of
the message in a cell array and the Message Lengths parameter for the message lengths. For
further examples of how to use this block in a model, see the slrt_ex_serialbinarytest and
slrt_ex_serialbinarysplit models in matlabroot/toolbox/slrealtime/examples.

 RS-232 Legacy Drivers

23-5

RS-232 Signal Data Types

Signals between blocks in composite drivers can be one of several basic data types: 8-bit, 16-bit, and
32-bit. These types are structures.

The 8-bit data types are NULL-terminated character vectors that are represented as Simulink
vectors. The width is the maximum number of characters that can be stored. In the figure, M is the
actual set of stored characters and N is the maximum number of characters that can be stored. This
figure illustrates 8-bit int NULL-terminated and 8–bit uint NULL-terminated data types.

The character vector has 11 characters terminated with a NULL byte (0). The data type cannot
contain a NULL byte as part of the real data.

The 16-bit and 32-bit data types use the first element of the vector as a count of the valid data. In the
figure of a 16-bit data type, C is the count of the valid data and N is the width of the vector. This figure
illustrates count + 16-bit int and count + 16-bit uint data types. This arrangement also applies to
count + 32-bit int and count + 32-bit uint data types.

The serial blocks interpret each entry in the vector as a single character. The low-level Send block
writes the low-order byte of each entry to the UART. The 16-bit and 32-bit data types allow the
embedding of 8-bit data values, including 0. The 8-bit data type is most useful with the ASCII Encode
and Decode blocks. The 16-bit and 32-bit data types are most useful for binary data streams.

RS-232 Zero Length Messages

Usually, you configure a FIFO read block of your model serial I/O to execute faster than the model
receives data. Doing so prevents the receive FIFO buffer from overflowing. You must also configure
your model to deal with the possibility that a FIFO Read block does not have a message on its output.

23 Serial Communications Support

23-6

Receive FIFOs can have too few characters for a FIFO read operation. A model that receives serial
I/O can have a FIFO Read block that executes in this situation. Depending on how you configure the
behavior, this condition causes a FIFO Read block to perform one of these operations:

• Return the last message it received.
• Return a zero-length message.

The Simulink Real-Time library of composite serial drivers has three FIFO Read blocks: FIFO Read
HDRS, FIFO Read Binary, and FIFO Read. For the FIFO Read HDRS or FIFO Read Binary blocks, you
configure this behavior by using the Output behavior parameter. The FIFO Read block returns
either a new message or a zero-length message.

To execute model code only if a new message arrives, check the first element of the returned vector,
depending on the character vector data type:

• In the 8-bit data type, the returned character vector is NULL-terminated. If the first element is 0,
the character vector has zero length and the FIFO read did not detect a new message.

• In the 16-bit and 32-bit data types, the first element is the number of characters in the character
vector. This value is 0 if the FIFO read did not detect a new message.

If the message has nonzero length, enable a subsystem to process the new character vector.
Otherwise, do not process it.

RS-232 Control When You Send a Message

You can use the structure of both serial data types to control when you send a message. For more
information, see “RS-232 Signal Data Types” on page 23-6. In both cases, a 0 in the first position
indicates an empty character vector.

• 8-bit data types — A value of 0 in the first position is the NULL terminator for the character
vector.

• 16-bit and 32-bit data types — The first position is the number of characters that follow.

If you connect an empty character vector to the XMT port on one of the send/receive subsystems, no
characters are pushed onto the transmit FIFO. You can get this empty character vector by using one
of these methods:

• To send a specific character vector occasionally, use the Product, Matrix Multiply block to multiply
the entire character vector by either 0 or 1. In this case, the 0 or 1 value becomes a transmit
enable. To optimize this operation, use a Demux block to extract the first element. Multiply just
that element by 0 or 1, then use the Mux block to combine it again.

• Use a Manual Switch, Multiport Switch, or Switch block. Configure the blocks for two ports to
choose between different messages, with one of the choices being a vector of 0 values. The Switch
block chooses only between vectors of the same width. Because the character vector length does
not use the whole vector, you can pad your data to the same width with 0 values.

See Also
ASCII Encode | ASCII Decode | FIFO Read | FIFO Write | FIFO Read HDRS | FIFO Read Binary |
Modem Control | Modem Status | ASCII Decode V2

 RS-232 Legacy Drivers

23-7

Serial Communications Support: Blocks

24

ASCII Encode
Convert Simulink values into uint8 character vector
Library: Simulink Real-Time / RS232

Description
The ASCII Encode block generates a uint8 output vector that contains a NULL-terminated character
vector based on a printf like format string. The data comes from the input ports.

Ports
Input

1 — Numbered ports that receive values to encode
numeric

Values that the block encodes as a null-terminated character vector.
Data Types: double | int8 | uint8 | int16 | uint16 | int32 | uint32

Output

D — Null-terminated character vector
character vector

Generated uint8 output vector that contains a NULL-terminated character vector.

Parameters
Format string — Format specifiers for converting values to ASCII
%d\r (default) | %c | %i | %o | %u | %x | %e | %f | %g

Enter a printf like format string. For each format specifier such as %d, the block replaces the
format specifier by the converted value in the corresponding input variable. The format specifiers
follow the normal description for printf.

Programmatic Use
Block Parameter: format

Number of variables — Number of block inputs
1 (default) | integer

The value on each port is inserted into the output character vector with the format specified in
Format string.

Programmatic Use
Block Parameter: nvars

24 Serial Communications Support: Blocks

24-2

Max output string length — Maximum length of converted character vector, in bytes
128 (default) | integer

The block allocates enough memory to support this length for the output port. When specifying this
length, include the NULL termination on the character vector.

If the converted character vector exceeds this length, the block returns an error and does not write
that character vector to the output port.

Programmatic Use
Block Parameter: maxlength

Variable types — Simulink data types allowed for input ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uint16'} | {'int32'} |
{'uint32'}

A cell vector with the same number of elements as specified in Number of variables can specify a
different data type for each input port. A single element is replicated. For example:

nvars=3

{ } — The three inputs are doubles.

{'uint8'} — The three inputs are uint8.

{'uint16', 'double', 'uint8'} — The first input is a uint16, the second input is a double,
and the third input is a uint8.

Programmatic Use
Block Parameter: vartypes

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII Decode

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

 ASCII Encode

24-3

ASCII Decode
Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

Description
The ASCII Decode block parses an input character vector according to a format specifier similar to
scanf and makes converted values available to the real-time application.

Ports
Input

D — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit, the
block ignores the upper 8 bits of each entry.
Data Types: int8 | uint8 | int16 | uint16

Output

1 — Numbered ports that send Simulink values
numeric

Output ports corresponding to items in Format string.

Dependency

Number of variables determines the number of output ports.
Data Types: double | int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Format string — Format specifier for parsing input vector
%d\r (default) | %c | %i | %o | %u | %x | %e | %f | %g

Enter a scanf like format string. Each format specifier such as %d must match a corresponding part
of the input vector. Literal strings in the format must match the first character plus the number of
characters. The format specifiers follow the normal description for scanf.

An example format string is:

'alpha %d bravo %f\n'

24 Serial Communications Support: Blocks

24-4

Programmatic Use
Block Parameter: format

Number of variables — Number of output ports for this block
1 (default) | integer

Enter the number of output ports for this block. For example:

If Format string has the value of %xmore text%x and the input vector for the block has
cdmabcdefgh90, you must specify the value of the Number of variables parameter as 2.

The first variable is assigned the value 0xcd. Next, the character vector mabcdefgh is considered a
match to more text because:

• The first character for both character vectors is m.
• Both character vectors have the same number of characters.

The second variable is then assigned the value 0x90. The character vector mabcdefgh does not have
to match exactly the value of Format string. This behavior is different from the behavior for scanf,
which requires an exact match.
Programmatic Use
Block Parameter: nvars

Variable types — Simulink data types allowed for output ports
{'double'} (default) | {'int8'} | {'uint8'} | {'int16} | {'uint16'} | {'int32'} |
{'uint32'}

A cell vector with the same number of elements as specified in Number of variables can specify a
different data type for each output port. A single element is replicated. For example:

nvars=3

{ } — The three outputs are doubles.

{'uint8'} — The three outputs are uint8.

{'uint16', 'double', 'uint8'} — The first output is a uint16, the second output is a double,
and the third output is a uint8.
Programmatic Use
Block Parameter: varids

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
ASCII Encode

 ASCII Decode

24-5

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-6

ASCII Decode V2
Parse ASCII character vector into Simulink values
Library: Simulink Real-Time / RS232

Description
The ASCII Decode block parses an input vector produced by one of the following:

• Serial port Receive block
• Serial port FIFO Read block
• ASCII Encode block

This block makes the converted values available to a real-time application. It assumes that the input
vector was prepared using an output format specifier similar to printf and uses an input format
specifier similar to scanf.

This block generates inline code for the target computer. You cannot use it for Simulink simulation.

Ports
Input

Data — Input vector to parse
character vector

The input vector can be either 8-bit or 16-bit and signed or unsigned. If the data format is 16-bit, the
block ignores the upper 8 bits of each entry.
Data Types: int8 | uint8 | int16 | uint16

Output

cnt — Number of format specifiers satisfied by input
integer

cnt receives the number of format specifiers satisfied by the input character vector.

Value — Inlined ports that send Simulink values
numeric

Output ports corresponding to items in Format.

This block generates inline code for the target computer. You cannot use it for Simulink simulation.
Data Types: single | double | int8 | uint8 | uint16 | int16 | int32 | uint32

 ASCII Decode V2

24-7

Parameters
Format — Format specifier for parsing input vector
'%f\n' (default) | %c | %d | %i | %o | %u | %x | %e | %g

Enter a scanf like format string. Each format specifier such as %d must match a corresponding part
of the input vector. Literal strings in the format must match the characters in the input vector. The
format specifiers follow the normal description for scanf. The specifiers must be enclosed in single
quotes. Failure to include these quotes causes simulation failures.

An example format string is:

'alpha %d bravo %f\n'

In this example, the data from the FIFO read is 'alpha 5'. In this case, cnt is 1 and the second
output is unchanged from the last time both were found in a character vector. If the model expects 2
values, and cnt is less than 2, the model detects an error in the data.

Programmatic Use
Block Parameter: format

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-8

FIFO Read
Read simple data streams
Library: Simulink Real-Time / RS232

Description
The FIFO Read block is the read side of a FIFO read/write pair. You use this block to parse simple
data streams. The block functions in two modes that you set by using the Read to delimiter check
box.

• If you select the Read to delimiter check box, the block reads only elements if the specified
delimiter has been written to the FIFO Write block. If the delimiter is found, the block returns
elements up to and including the delimiter in the output vector. If the delimiter is not found, the
block returns a zero-length vector, as determined by the data type. (If you have a zero-length
vector, you can have your model perform a particular operation or ignore the case.)

• If you clear the Read to delimiter check box, the block returns elements between Minimum
read size and the smaller of the number of elements currently in the FIFO and Maximum read
size.

When performing ASCII reads, select the Read to delimiter check box. When performing binary
reads, clear this check box.

Here are some examples of how you can set up the FIFO Read block:

• Transmit side of the interrupt service routine — If the interrupt reason is not an empty
hardware FIFO on the UART, the maximum input port receives a value of 0. If the hardware FIFO
is empty, it receives the size of the hardware FIFO. The minimum input port receives the constant
value of 1.

• Receive side of the interrupt service routine — The typical case with ASCII data has the
minimum and maximum input ports disabled. The Read to delimiter parameter check box is
selected and the Delimiter parameter has the value of carriage return or line feed. The value of
the Maximum read size parameter is large (along the order of the FIFO size) and the value of
Minimum read size parameter is 1. In this form, the driver acts like a nonblocking read line.

An alternate receive-side configuration for fixed-length binary blocks of data has the value of the
Maximum read size and Minimum read size parameters set to the fixed length of the block.
The Read to delimiter parameter is not selected.

For complex data streams, consider using the FIFO Read HDRS and FIFO Read Binary blocks. For
guidelines on when to use these blocks, see “RS-232 FIFO Read Blocks” on page 23-5.

 FIFO Read

24-9

Ports
Input

F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

MAX — Maximum number of bytes to read from FIFO
integer

The maximum number of bytes to return from the block.

Dependency

To make this port visible, set parameter Max and Min read size ports.

MIN — Minimum number of bytes to read from FIFO
integer

The minimum number of bytes to return from the block.

Dependency

To make this port visible, set parameter Max and Min read size ports.

Output

D — Parsed data read from FIFO
vector

Vector containing the parsed data read from the FIFO.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

ENA — Pass value of MAX through
integer

Passes the value of port MAX through to the block that reads the ENA port.

Dependency

To make this port visible, set parameters Max and Min read size ports and Enable passthrough.

Parameters
Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned by using the extra element as:

24 Serial Communications Support: Blocks

24-10

• A null terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null
terminator, the block does not return any characters. If the FIFO contains 5, the block returns 5
characters plus the null terminator.

If you select the parameter Max and Min read size ports, the block interprets the value input on
port MAX as the maximum number of characters to return. The actual maximum number of characters
to return is the smaller of the value on port MAX and the maximum read size in the block parameters.
Use this value in binary mode when you have not selected the Read to delimiter check box.

Programmatic Use
Block Parameter: maxsize

Minimum read size — Minimum number of characters returned by block
1 (default) | integer

Enter the smallest read size in bytes. The FIFO must contain at least this number of elements before
elements are returned.

If you select the parameter Max and Min read size ports, the value of port MIN supersedes this
value.

Programmatic Use
Block Parameter: minsize

Read to delimiter — Return delimited element sets
on (default) | off

Select this check box to enable the return of element sets that terminate with the Delimiter value.
Use this parameter when working with character-based elements.

Programmatic Use
Block Parameter: usedelimiter

Delimiter — Terminator value for delimited element sets
13 (default) | uint

Enter the decimal value for an 8-bit input terminator. This parameter specifies the value on which a
FIFO read operation terminates. This value works with the Read to delimiter parameter. By default,
this block looks for a carriage return. It returns characters only when one is found. For reference, the
decimal value of a carriage return is 13 and a line feed is 10.

Programmatic Use
Block Parameter: delimiter

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint | 8 bit int null terminated

The 8-bit data types produce a NULL-terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

 FIFO Read

24-11

Programmatic Use
Block Parameter: outputtype

Max and Min read size ports — Enable maximum and minimum input ports
off (default) | on

When you select this check box:

• The value from input port MAX is the maximum number of characters to be removed from the
FIFO. If this number exceeds the value of Maximum read size, the block disregards the value
from the maximum input port. It takes the value of Maximum read size as the maximum number
of characters to be removed from the FIFO.

• The value from the input port MIN is the minimum number of characters that the FIFO must
contain before elements can be returned. This value supersedes the value set with the Minimum
read size parameter.

This setting makes the input ports MAX and MIN visible.

Programmatic Use
Block Parameter: enable

Enable passthrough — Enable passthrough of MAX value
off (default) | on

Select this check box to pass the value of input port MAX through to output port ENA.

Dependency

Causes output port ENA to become visible.

Programmatic Use
Block Parameter: enableout

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use

sampletime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
FIFO Write

24 Serial Communications Support: Blocks

24-12

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

 FIFO Read

24-13

FIFO Write
Write simple data streams
Library: Simulink Real-Time / RS232

Description
The FIFO Write block is the write side of a FIFO read/write pair. Use this block to generate simple
data streams.

Ports
Input

D — Data to write to FIFO
vector

Vector containing the data to write to the FIFO.

Dependency

To determine the data type of this vector, set the parameter Input vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Output

F — FIFO vector
serialfifoptr

Connects to the FIFO that writes data to the serial port.

DP — True if new data is present in the FIFO
true | false

If data is present in the FIFO, returns true.

Dependency

To make this port visible, set parameters Max and Min read size ports and Enable passthrough.

Parameters
Size — Size of FIFO, in bytes
1024 (default) | integer

Enter the number of elements that can be held in the FIFO at one time. If a write operation to the
FIFO causes the number of elements to exceed Size, an error occurs.

24 Serial Communications Support: Blocks

24-14

Programmatic Use
Block Parameter: size

Input vector type — Specify input data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint | 8 bit int null terminated

For the 16-bit and 32-bit data types, include as first element the number of elements to expect in the
rest of the input vector. The count controls how many bytes that the block copies into the FIFO. The
block does not copy the count itself into the FIFO.

For the 8-bit data types, provide a NULL-terminated character vector in the output vector. The block
copies data into the FIFO up to, but not including, the NULL terminator.

For more information, see “RS-232 Legacy Drivers” on page 23-3.

Programmatic Use
Block Parameter: inputtype

Data present output — Enables output DP
off (default) | on

Select this check box to create the Boolean output DP. If data is present in the FIFO, DP becomes
true. The transmit side of the send/receive subsystem uses this output. This output is given to the
Enable TX block, which enables the transmitter buffer empty interrupt.

This setting makes the output port DP visible.

Programmatic Use
Block Parameter: present

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use

sampletime

ID — Identifier for overflow messages
character vector

Enter a user-defined identifier for FIFO overflow messages.

Programmatic Use
Block Parameter: id

Version History
Introduced in R2020b

 FIFO Write

24-15

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
FIFO Read

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-16

FIFO Read HDRS
Read multiple ASCII data streams according to header information
Library: Simulink Real-Time / RS232

Description
The FIFO Read HDRS block identifies and separates ASCII data streams that have embedded
identifiers.

The data following a particular header can have varying lengths, but has a common termination
marker such as <CR><LF>. Although you can attain this same functionality with the FIFO Read block,
it requires a complicated state machine with this behavior:

• If the same header arrives in the FIFO more than once after the block was last executed, the block
returns the latest instance of the header. The block catches up with data that arrives faster than
the block executes.

• If a header arrives in the FIFO that does not match an item in the headers list, the block discards
the message.

• If bytes arrive in the FIFO that do not match a header, the block interprets the message as having
an unspecified header. The block skips these bytes.

The matlab/toolbox/slrealtime/examples folder contains examples that show how to use the
FIFO Read HDRS block: slrt_ex_serialbaseboardasciitest and
slrt_ex_serialbaseboardasciisplit.

Ports
Input

F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.

Dependency

To make this port visible, set parameter Enable input.

 FIFO Read HDRS

24-17

Output

1 — Numbered output streams, one per header
vector

Vectors containing the parsed data read from the FIFO. Each output corresponds to one of the
headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.
Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Header — Search targets in ASCII data stream
cell array of character vector

Enter the headers that you want the block to look for in a block of data from the FIFO. Enter each
header in single quotes as an element in a cell array.

Programmatic Use
Block Parameter: hdr

Terminating string — Characters that end data stream
[13 10] (default) | [integer]

Enter the terminating character vector for the data. Enter the characters defining the end of
character vector, typically one or two characters.

Programmatic Use
Block Parameter: nterm

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

• Hold last output if no new data — Block keeps the output from the last FIFO message.
• Zero output if no new data — Block overwrites the first element of the output with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box. The input
port takes a Boolean signal.

Dependency

Causes input port E to become visible.

24 Serial Communications Support: Blocks

24-18

Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned by using the extra element as:

• A NULL terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null
terminator, the block does not return any characters. If it contains 5, the block returns 5 characters
plus the NULL terminator.

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint | 8 bit int null terminated

The 8-bit data types produce a NULL-terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use

sampletime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
FIFO Read | FIFO Write | FIFO Read Binary

 FIFO Read HDRS

24-19

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-20

FIFO Read Binary
Read multiple binary data streams according to header information
Library: Simulink Real-Time / RS232

Description
The FIFO Read Binary block reads multiple binary headers from a FIFO.

This block identifies and separates data by finding unique byte sequences (headers) that mark the
data. Each header indicates the start of a fixed-length binary message. If the same header arrived in
the FIFO more than once since the block was last executed, the block discards the older data. It then
returns the latest instance of the header. The block catches up with data that arrives faster than the
block executes.

The matlab/toolbox/slrealtime/examples folder contains examples that show how to use the
FIFO Read HDRS block: slrt_ex_serialbaseboardbinarytest and
slrt_ex_serialbaseboardbinarysplit.

Ports
Input

F — FIFO from which to read data
serialfifoptr

Connects to the software FIFO containing data read from the serial port.

E — Enable read from FIFO
true | false

If true, read from FIFO.

Dependency

To make this port visible, set parameter Enable input.

Output

1 — Numbered output streams, one per header
vector

Vectors containing the parsed data read from the FIFO. Each output corresponds to one of the
headers.

Dependency

To determine the data type of this vector, set the parameter Output vector type.

 FIFO Read Binary

24-21

Data Types: int8 | uint8 | int16 | uint16 | int32 | uint32

Parameters
Header — Search targets in binary data stream
cell array of binary data

Enter the headers that you want the block to look for in a block of data from the FIFO. Enter each
header as an element in a cell array either as a quoted character vector or a concatenation with
char(val) for non-printable byte patterns.

Programmatic Use
Block Parameter: hdr

Message Lengths — Message lengths, in bytes
1024 (default) | integer

Enter the message length, in bytes. Include the header in the length.

Programmatic Use
Block Parameter: lengths

Output behavior — Behavior when no new data
Zero output if no new data (default) | Hold last output if no new data

From the list, select the behavior of the block if the FIFO has not received new data:

• Hold last output if no new data — Block keeps the output from the last FIFO message.
• Zero output if no new data — Block overwrites the first element of the output with 0.

Programmatic Use
Block Parameter: hold

Enable input — Enable read from FIFO
off (default) | on

To create an input port that enables or disables the read operation, select this check box. The input
port takes a Boolean signal.

Dependency

Causes input port E to become visible.

Programmatic Use
Block Parameter: enable

Maximum read size — Maximum number of characters returned by block
1024 (default) | integer

Specify the maximum number of characters for this block to return. The resulting vector size is one
more than this maximum number of characters. This block indicates the number of characters being
returned by using the extra element as:

• A NULL terminator for the 8-bit data types
• The character count for the 16-bit and 32-bit data types

24 Serial Communications Support: Blocks

24-22

Enter a large enough number. If this number is too small, the block cannot return anything. For
example, if you enter the value 10, but on execution the FIFO contains 11 characters plus the null
terminator, the block does not return any characters. If it contains 5, the block returns 5 characters
plus the NULL terminator.

Programmatic Use
Block Parameter: maxsize

Output vector type — Specify output data type
8 bit uint null terminated (default) | count+32 bit int | count+32 bit uint | count
+16 bit int | count+16 bit uint | 8 bit int null terminated

The 8-bit data types produce a NULL-terminated character vector in the output vector. For 16-bit and
32-bit data types, the first element contains the number of elements to expect in the rest of the
output vector.

Programmatic Use
Block Parameter: outputtype

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use

sampletime

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

 FIFO Read Binary

24-23

Modem Control
Control state of RTS and DTR output lines on serial port
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Modem Control block controls the state of either or both of the Request To Send (RTS) and Data
Terminal Ready (DTR) output lines on the serial port. To choose which output lines to control, select
the RTS and DTR parameters.

Ports
Input

RTS — Level-sensitive signal for setting ready-to-send line
double

The behavior of the block is:

• RTS > 0.5 — The block asserts the RTS control bit to true. The output goes to a positive
voltage.

• RTS ≤ 0.5 — The block asserts the RTS control bit to false. The output goes to a negative
voltage.

Dependency

If the RTS parameter is off, this input has no effect.

DTR — Level-sensitive signal for setting data-terminal-ready line
double

The behavior of the block is:

• DTR > 0.5 — The block asserts the DTR control bit to true. The output goes to a positive
voltage.

• DTR ≤ 0.5 — The block asserts the DTR control bit to false. The output goes to a negative
voltage.

Dependency

If the DTR parameter is off, this input has no effect.

Parameters
RTS — Enable control of RTS line for serial device
on (default) | off

24 Serial Communications Support: Blocks

24-24

Select this check box to control the RTS line for this board.

Programmatic Use

rts

DTR — Enable control of DTR line for serial device
on (default) | off

Select this check box to control the DTR line for this board.

Programmatic Use

dtr

Serial port — Select serial port
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

Selects the RS232 serial port for communications. If using USB-to-serial adapters, the target
computer detects these adapters as serusb1, serusb2, and so on in the order that the adapters are
connected to the serial devices. The order of port assignment is retained through the power cycle of
the target computer or serial device if there is no change in the connections to the ports.

Programmatic Use

port

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Legacy Serial Read | Legacy Serial Setup | Legacy Serial Write | Modem Status

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

 Modem Control

24-25

Modem Status
Return state of modem control lines
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Modem Status block reads the state of the input modem control lines.

This block has outputs of type Boolean. If the input voltage is positive, the output is true. If the input
voltage is negative, the output is false.

Ports
Output

CTS — Status of clear to send line
true | false

If true, the modem is ready to receive data.

Dependency

To make this output visible, select the CTS parameter.

DSR — Status of data set ready line
true | false

If true, the modem is ready to send and receive data.

Dependency

To make this output visible, select the DSR parameter.

DCD — Status of data carrier detect line
true | false

If true, the modem is receiving a carrier from a remote device.

Dependency

To make this output visible, select the DCD parameter.

Parameters
CTS — Enables clear to send status output
on (default) | off

Select this check box to monitor the CTS line of the modem.

24 Serial Communications Support: Blocks

24-26

Selecting this parameter makes the CTS port visible.

Programmatic Use

cts

DSR — Enables data set ready status output
on (default) | off

Select this check box to monitor the DSR line of the modem.

Selecting this parameter makes the DSR port visible.

Programmatic Use

dsr

DCD — Enables data carrier detect status output
on (default) | off

Select this check box to monitor the DCD line of the modem.

Selecting this parameter makes the DCD port visible.

Programmatic Use

dcd

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use

sampletime

Serial port — Select serial port
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

Selects the RS232 serial port for communications. If using USB-to-serial adapters, the target
computer detects these adapters as serusb1, serusb2, and so on in the order that the adapters are
connected to the serial devices. The order of port assignment is retained through the power cycle of
the target computer or serial device if there is no change in the connections to the ports.

Programmatic Use

port

Version History
Introduced in R2020b

 Modem Status

24-27

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Legacy Serial Read | Legacy Serial Setup | Legacy Serial Write | Modem Control

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-28

Legacy Serial Read
Read input data for baseboard serial communications
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Legacy Serial Read block reads input data for baseboard serial communications.

Ports
Output

Output — Data from serial port read
serial data

The Output port provides the data from the serial port read.

Parameters
Serial port — Select serial port
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

Select the RS232 serial port for communications. If using USB-to-serial adapters, the target computer
detects these adapters as serusb1, serusb2, and so on in the order that the adapters are connected
to the serial devices. The order of port assignment is retained through the power cycle of the target
computer or serial device if there is no change in the connections to the ports.

Programmatic Use

port

Max Read Count — Select maximum word read count
51 (default) | int

Use this value to select the maximum word read count.

Programmatic Use

count

Output Datatype — Select output data type
8 bit uint null terminated (default) | 8 bit int null terminated | count+16 bit
uint | count+16 bit int | count+32 bit uint | count+32 bit int

Use this value to select the output data type.

 Legacy Serial Read

24-29

Programmatic Use

dtype

SampleTime — Select sample time in seconds
.01 (default) | double

Use this value to select the sample time in seconds.

Programmatic Use

sampletime

Version History
Introduced in R2020b

USB to Serial for RS232 Blocks

The RS232 mainboard blocks support connecting USB serial adapter ports. The Serial port
parameter of the Legacy Serial Read block, Legacy Serial Write block, Legacy Serial Setup block,
Legacy Serial Port block, and Legacy Serial Port F block means that you can select a USB Serial
Port or a Legacy Serial Port.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Legacy Serial Setup | Legacy Serial Write | Modem Control | Modem Status

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-30

Legacy Serial Setup
Set up baseboard serial communications
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Legacy Serial Setup block sets up baseboard serial communications.

Parameters
Serial port — Select serial port
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

Select the RS232 serial port for communications. If using USB-to-serial adapters, the target computer
detects these adapters as serusb1, serusb2, and so on in the order that the adapters are connected
to the serial devices. The order of port assignment is retained through the power cycle of the target
computer or serial device if there is no change in the connections to the ports.

Programmatic Use

port

Baud rate — Select serial port baud rate
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Use this value to select the serial port baud rate.

Programmatic Use

baud

Number of data bits — Select serial port data bits
8 (default) | 7 | 6 | 5

Use this value to select the number of serial port data bits.

Programmatic Use

width

Number of stop bits — Select serial port stop bits
1 (default) | 2

Use this value to select the number of serial port stop bits.

Programmatic Use

nstop

 Legacy Serial Setup

24-31

Parity — Select serial port parity
None (default) | Even | Odd | Mark | Space

Use this value to select serial port parity.

Programmatic Use

parity

Enable auto RTX/CTS — Select serial port RTX/CTS mode
off (default) | on

Use this value to select the serial port RTX/CTS mode.

Programmatic Use

ctsmode

Version History
Introduced in R2020b

USB to Serial for RS232 Blocks

The RS232 mainboard blocks support connecting USB serial adapter ports. The Serial port
parameter of the Legacy Serial Read block, Legacy Serial Write block, Legacy Serial Setup block,
Legacy Serial Port block, and Legacy Serial Port F block means that you can select a USB Serial
Port or a Legacy Serial Port.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Legacy Serial Read | Legacy Serial Write | Modem Control | Modem Status

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-32

Legacy Serial Write
Write output data for baseboard serial communications
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Legacy Serial Write block writes output data for baseboard serial communications.

Ports
Input

Input — Data for serial port write
serial data

The Input port contains the data to write for the serial port.

Parameters
Serial port — Select serial port
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

Select the RS232 serial port for communications. If using USB-to-serial adapters, the target computer
detects these adapters as serusb1, serusb2, and so on in the order that the adapters are connected
to the serial devices. The order of port assignment is retained through the power cycle of the target
computer or serial device if there is no change in the connections to the ports.

Programmatic Use

port

Output Datatype — Select output data type
8 bit uint null terminated (default) | 8 bit int null terminated | count+16 bit
uint | count+16 bit int | count+32 bit uint | count+32 bit int

Use this value to select the output data type.

Programmatic Use

dtype

SampleTime — Select sample time in seconds
.01 (default) | double

Use this value to select the sample time in seconds.

 Legacy Serial Write

24-33

Programmatic Use

sampletime

Version History
Introduced in R2020b

USB to Serial for RS232 Blocks

The RS232 mainboard blocks support connecting USB serial adapter ports. The Serial port
parameter of the Legacy Serial Read block, Legacy Serial Write block, Legacy Serial Setup block,
Legacy Serial Port block, and Legacy Serial Port F block means that you can select a USB Serial
Port or a Legacy Serial Port.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Legacy Serial Read | Legacy Serial Setup | Modem Control | Modem Status

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-34

Legacy Serial Port
Send and receive data over mainboard baseboard serial port
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Send/Receive block sets up the serial interface to send and receive basic character streams. This
block has basic First In, First Out (FIFO) Read blocks inside the subsystem. It generates output as an
array of packed integers (settable at 8 bits, 16 bits, or 32 bits). Characters appear in the lower byte
and received status information appears in the upper byte.

Ports
Input

XMT — Vector of data to transmit
vector

Vector of the data used to transmit over the port.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Output

RCV — Vector of data received over serial port
vector

Vector containing data that has been received from serial port.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Serial port — Port that is being accessed
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

This parameter specifies the port for which you want to view or modify parameters. If using USB-to-
serial adapters, the target computer detects these adapters as serusb1, serusb2, and so on in the
order that the adapters are connected to the serial devices. The order of port assignment is retained
through the power cycle of the target computer or serial device if there is no change in the
connections to the ports.

Programmatic Use
Block Parameter: port

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

 Legacy Serial Port

24-35

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baud

Data bits — Number of bits per character
8 (default) | 7 | 6 | 5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: width

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

Programmatic Use
Block Parameter: nstop

Parity — Parity for checking data transfer
None (default) | Even | Odd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parity

Enable auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the Request To Send/Clear To Send (RTS/CTS) handshake of the Universal Asynchronous
Receiver-Transmitter (UART) for flow control, select this check box. Serial controllers use the
RTS/CTS handshake to prevent data loss due to hardware FIFO overflow on the device that you are
sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO. If your model gets
FIFO overruns, select this check box.

Programmatic Use
Block Parameter: ctsmode

Max Output count — Maximum number of elements for block to return
1024 (default) | integer

Enter the maximum number of elements that you want returned by a single call to this block. The
block uses this parameter to set the output vector width.

If you select the Read to delimiter check box and if the block does not find the delimiter before it
reads Receive maximum read characters, the output vector is empty.

Programmatic Use
Block Parameter: maxread

Min Output count — Minimum number of elements for block to return
1 (default) | integer

24 Serial Communications Support: Blocks

24-36

Enter the minimum number of characters to read. If the FIFO does not contain at least this number of
characters, the output vector is empty.

Programmatic Use
Block Parameter: minread

Read to delimiter — Return characters including message delimiter
on (default) | off

For the block to return all characters in the FIFO, up to and including the specified delimiter, select
this check box.

If the buffer has errors, such as framing errors, the modem returns characters regardless of the
presence of the delimiter. These returned characters help diagnose errors such as mismatched baud
rates.

If the block does not find the delimiter before it reads Receive maximum read characters, the
output vector is empty.

Programmatic Use
Block Parameter: usedelimiter

Delimiter — Numeric value of message delimiter
13 (default) | integer

Enter the numeric value of the character that is the message delimiter. Any value from 0 to 255 is
valid. The common case looks for 10 (line feed) or 13 (carriage return).

Programmatic Use
Block Parameter: delimiter

Receive data type — Data type of receiver
8 bit int null terminated (default) | 8 bit uint null terminated | count+16 bit int
| count+16 bit uint | count+32 bit int | count+32 bit uint

This parameter specifies the data type of the receiver. The 8-bit data types produce a NULL-
terminated character vector in the output vector.

For 16-bit and 32-bit data types, the first element contains the number of valid elements in the rest of
the output vector.

For 8-bit data types, only the character data is in the output vector, and a NULL terminator is
appended. The 16-bit or 32-bit wide data types cause the error status from the UART to be placed in
the second byte of each data element. (The error status contains the parity, overrun, framing, and
break bits.) The character data is in the bottom 8 bits of each element. The first element of the vector
contains the number of data elements that follow.

Programmatic Use
Block Parameter: odtype

Receive FIFO size — FIFO size in bytes
1024 (default)

This parameter specifies the receive FIFO size in bytes.
Example: 1024

 Legacy Serial Port

24-37

Programmatic Use
Block Parameter: fifosize
Data Types: int32

Transmit data type — Data type of transmitter
count+32 bit int (default) | count+32 bit uint | count+16 bit int | count+16 bit uint
| 8 bit int null terminated | 8 bit uint null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a NULL-
terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of elements to
expect in the rest of the input vector. Only the low-order byte of each data element is sent. Setting
this data type enables a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types. Because the 8-
bit data types are NULL-terminated character vectors, the NULL byte terminates the character
vector.

Programmatic Use
Block Parameter: idtype

Sample Time — Sample time
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

Version History
Introduced in R2008a

USB to Serial for RS232 Blocks

The RS232 mainboard blocks support connecting USB serial adapter ports. The Serial port
parameter of the Legacy Serial Read block, Legacy Serial Write block, Legacy Serial Setup block,
Legacy Serial Port block, and Legacy Serial Port F block means that you can select a USB Serial
Port or a Legacy Serial Port.

See Also
Legacy Serial Port F

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

24 Serial Communications Support: Blocks

24-38

Legacy Serial Port F
Send and receive data over mainboard baseboard serial port with FIFO
Library: Simulink Real-Time / RS232 / Mainboard

Description
The Send/Receive FIFO block sets up the serial interface to send and receive character and binary
streams. It transmits input data as does the Send/Receive block, but it propagates received data
through First In, First Out (FIFO) outputs.

A model that contains a Send/Receive FIFO block and the FIFO Read block provides the same
capability as the Send/Receive block. A model that contains a Send/Receive FIFO block and a FIFO
Read HDRS or FIFO Read Binary block provides greater capability than the Send/Receive block.

Ports
Input

XMT — Vector of data to transmit
vector

Vector of the data used to transmit over the port.
Data Types: int8 | int16 | int32 | uint8 | uint16 | uint32

Output

FIFO — FIFO of data received over serial port
serialfifoptr

First In, First Out (FIFO) containing data that has been received from the serial port.

Parameters
Serial port — Port that is being accessed
Legacy Serial Port 1 (default) | .. | Legacy Serial Port 8 | USB Serial Port 1 | .. | USB
Serial Port 8

This parameter specifies the port for which you want to view or modify parameters. If using USB-to-
serial adapters, the target computer detects these adapters as serusb1, serusb2, and so on in the
order that the adapters are connected to the serial devices. The order of port assignment is retained
through the power cycle of the target computer or serial device if there is no change in the
connections to the ports.

Programmatic Use
Block Parameter: port

 Legacy Serial Port F

24-39

Baud rate — Baud for transferring data
115200 (default) | 57600 | 38400 | 19200 | 9600 | 4800 | 2400 | 1200 | 600 | 300 | 110

Select a baud for transmitting and receiving data through the modem.

Programmatic Use
Block Parameter: baud

Data bits — Number of bits per character
8 (default) | 7 | 6 | 5

Select the number of bits that encode a character.

Programmatic Use
Block Parameter: width

Stop bits — Number of stop bits for port
1 (default) | 2

Select the number of stop bits for the character stream.

Programmatic Use
Block Parameter: nstop

Parity — Parity for checking data transfer
None (default) | Even | Odd | Mark | Space

Select a parity for checking data integrity.

Programmatic Use
Block Parameter: parity

Enable auto RTS/CTS — Enable RTS/CTS handshake
off (default) | on

To enable the Request To Send/Clear To Send (RTS/CTS) handshake of the Universal Asynchronous
Receiver-Transmitter (UART) for flow control, select this check box. Serial controllers use the
RTS/CTS handshake to prevent data loss due to hardware FIFO overflow on the device that you are
sending to.

Usually, the interrupt service routine executes quickly enough to empty the FIFO. If your model gets
FIFO overruns, select this check box.

Programmatic Use
Block Parameter: ctsmode

Port to modify — Port that is being accessed
1 (default) | 2

This parameter specifies the port for which you want to view or modify parameters. On the Simulink
block, the upper port is port 1 and the lower port is port 2.

Programmatic Use
Block Parameter: port

Receive FIFO size — FIFO size in bytes
1024 (default)

24 Serial Communications Support: Blocks

24-40

This parameter specifies the receive FIFO size in bytes.
Example: 1024

Programmatic Use
Block Parameter: fifosize
Data Types: int32

Transmit data type — Data type of transmitter
count+32 bit int (default) | count+32 bit uint | count+16 bit int | count+16 bit uint
| 8 bit int null terminated | 8 bit uint null terminated

This parameter specifies the data type of the transmitter. The 8-bit data types require a NULL-
terminated character vector in the input vector.

The 16-bit and 32-bit data types reserve the first full element to contain the number of elements to
expect in the rest of the input vector. Only the low-order byte of each data element is sent. Setting
this data type enables a wider data type to hold the bytes.

If the data stream requires a NULL byte, select one of the 16-bit or 32-bit data types. Because the 8-
bit data types are NULL-terminated character vectors, the NULL byte terminates the character
vector.

Programmatic Use
Block Parameter: idtype

Sample Time — Sample time
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that the sample time is
inherited.

Programmatic Use
Block Parameter: sampletime

Version History
Introduced in R2008a

USB to Serial for RS232 Blocks

The RS232 mainboard blocks support connecting USB serial adapter ports. The Serial port
parameter of the Legacy Serial Read block, Legacy Serial Write block, Legacy Serial Setup block,
Legacy Serial Port block, and Legacy Serial Port F block means that you can select a USB Serial
Port or a Legacy Serial Port.

See Also
FIFO Read | FIFO Read HDRS | FIFO Read Binary | Legacy Serial Port

Topics
“RS-232 Serial Communication” on page 23-2
“RS-232 Legacy Drivers” on page 23-3

 Legacy Serial Port F

24-41

Target Management

43

Target Management Blocks

The Simulink Real-Time target management blocks support target computer management functions.

25

SLRT Overload Options
Select CPU overload options
Library: Simulink Real-Time / Target Management

Description
The SLRT Overload Options block configures CPU overload options for the model rate identified
through the TID port. This block outputs the current CPU overload count for the identified rate. If the
Enable TET Output parameter is on, the block outputs TET data that you can mark for data logging
in the Simulation Data Inspector.

Ports
Input

TID — Task ID
int

Connect any signal from the model to the TID (Task ID) port and the block applies the overload
options to the model task in which the signal executes.
Example: 1

Output

Count — Overload count
int

The CPU overload count for the selected model rate.

Parameters
Startup Duration — Select startup steps for ignoring CPU overloads
1 (default) | int

The number of startup execution steps for which overloads are ignored.
Programmatic Use

startupDur

25 Target Management Blocks

25-2

Source — Selects CPU overload input during startup
Tunable Parameter (default) | Input Port

The source of CPU overloads for the model rate during startup can be a tunable parameter or a block
input port.

Programmatic Use

startupDurSrc

Max Overloads — Select maximum CPU overloads
0 (default) | int

The number of accepted overloads before execution is halted. There is a separate overload counter
for each sub-rate. Each counter is compared to Max Overloads separately, not compared to the sum
of the counters.

Programmatic Use

maxOverload

Source — Selects CPU overload input after startup
Tunable Parameter (default) | Input Port

The source of CPU overloads for the model rate after startup can come from a tunable parameter or
from the block input port.

Programmatic Use

maxOverloadSrc

Enable TET Output — Enable output TET data
off (default) | on

When enabled, the CPU overload data is output for display in the TET monitor and the Simulation
Data Inspector.

Programmatic Use

TETFlag

Version History
Introduced in R2020b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Thread Trigger

Topics
“CPU Overload”

 SLRT Overload Options

25-3

“Troubleshoot Overloaded CPU from Executing Real-Time Application”

25 Target Management Blocks

25-4

Persistent Variable Read
Read persistent variable value from target computer
Library: Simulink Real-Time / Target Management

Description
The Persistent Variable Read block reads the selected persistent variable from the target computer
when you load the real-time application. If the block cannot find the selected variable, the block
outputs the selected default value. The variable value persists when the target computer is shut
down.

Use the getPersistentVariables function and setPersistentVariables function to access
the persistent variable values on the target computer.

Ports
Output

Data — Persistent variable output data
variable data

The data type and dimensions of the Persistent Variable Read block output port are set by the
Default value parameter. If these properties do not match those of the variable stored on the
target computer, an error occurs during real-time application load.

The block can take a complex number. The complexity of the Persistent Variable Read block output
port is set by the Default value parameter. If this property does not match the complexity of the
variable stored on the target computer, an error occurs during real-time application load.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Variable name — Name of persistent variable
Variable1 (default) | character vector | string

The Variable name parameter provides the name of the persistent variable. Use this name to access
the variable in the structure of variable values retrieved from the target computer by using the
getPersistentVariables function.

Programmatic Use
Block Parameter: varName

 Persistent Variable Read

25-5

Default value — Starting value of persistent variable when variable does not exist on
target computer
0 (default) | supports same data types as Data port

The Default value parameter provides a starting value for the persistent variable when the variable
does not exist on the target computer. This parameter sets the data type and dimensions of the
Persistent Variable Read block output port.

Programmatic Use
Block Parameter: defaultValue

Version History
Introduced in R2022a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Persistent Variable Write | getPersistentVariables | setPersistentVariables

25 Target Management Blocks

25-6

Persistent Variable Write
Write persistent variable value to target computer
Library: Simulink Real-Time / Target Management

Description
The Persistent Variable Write block writes a value to the selected persistent variable when the real-
time application starts and stops. The variable value persists when the target computer is shut down.

Use the getPersistentVariables function and setPersistentVariables function to access
the persistent variable values on the target computer.

Ports
Input

Data — Persistent variable input data
variable data

The data type of the Persistent Variable Write block input port is inherited from its input signal. The
signal can be any dimension.

The block can take a complex number. The complexity of the Persistent Variable Write block input
port is inherited from its input signal.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Variable name — Name of persistent variable
Variable1 (default) | character vector | string

The Variable name parameter provides the name of the persistent variable. Use this name to access
the variable in the structure of variable values retrieved from the target computer by using the
getPersistentVariables function.

Programmatic Use
Block Parameter: varName

Version History
Introduced in R2022a

 Persistent Variable Write

25-7

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Persistent Variable Read | getPersistentVariables | setPersistentVariables

25 Target Management Blocks

25-8

Utilities

9

Utility Blocks

The Simulink Real-Time utility blocks support utility functions. Some of these blocks exist in the
Utilities library, available at the top level of the Simulink Real-Time Block Library. Other blocks are
available as sublibraries of the I/O function that they support.

26

Bit Packing
Construct data frames
Library: Simulink Real-Time / Utilities

Description
The Bit Packing block constructs data frames. Its output port is typically connected to an input port of
a Send block or Digital Output block. The block has one output port. This port can be a vector of
arbitrary size. It represents the data frame entity constructed by the signals entering the block at its
input ports. The number of input ports depends on the setting in the block dialog box.

Parameters
Bit Patterns — Packed data bit pattern
{[0:31]} (default)

Specify bit patterns. The data type entered in the control must be a MATLAB cell array vector. The
number of elements in the cell array define the number of input ports shown by this block instance.
The cell array elements must be of type double array and define the position of each bit of the
incoming value (data typed input port) in the outgoing double value (data frame). From a data type
perspective (input ports), the block behaves like a Simulink Sink block. The data types of the input
ports are inherited from the driving blocks.

Programmatic Use
Block Parameter: BitPatterns

Output port (packed) data type — Packed data type
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

From the list, select an output port (packed) data type.

Programmatic Use
Block Parameter: PackDataType

Output port (packed) dimensions — Packed data dimensions
[1] (default)

Specify the dimensions the output port (packed). Enter this value as a vector. Specify the size of the
port by using a format compatible with the MATLAB size command.

Programmatic Use
Block Parameter: PackDataSize

Version History
Introduced in R2006a

26 Utility Blocks

26-2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Bit Unpacking

Topics
“Configure Input and Output Ports for Bit Packing and Unpacking”

 Bit Packing

26-3

Bit Unpacking
Deconstruct data frames
Library: Simulink Real-Time / Utilities

Description
The Bit Unpacking block extracts data frames. Its input port is typically connected to an output port
of a Receive block or Digital Input block.

The block has one input port, which represents the data frame entity from which the signals are
extracted and leaving the block at its output ports. The number of output ports and the data type of
each output port depend on the settings in the block dialog box.

Bit Unpack Four Bytes

This example shows how to configure a Bit Upacking block to:

• Receive a 32-bit word as input by using input port data type uint32.
• Unpack four 8-bit words (bytes) from the input data by using a bit pattern.
• Send four 8-bit words as output by using the output data type uint8.

26 Utility Blocks

26-4

After configuring the block parameters, the Bit Upacking block appears as shown.

Parameters
Bit Patterns — Select bit pattern
{[0:31]} (default)

Specify bit patterns. The data type must be a MATLAB cell array vector. The number of elements in
the cell array define the number of input ports shown by this block instance. The cell array elements
must be of type double array and define the position of each bit of the incoming value (data typed
input port) in the outgoing double value (data frame). From a data type perspective, the block
behaves like a Sink block. The Input port (packed) data types specify the data type of the input
port.
Programmatic Use
Block Parameter: BitPatterns

Input port (packed) data types — Packed data type
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | boolean

 Bit Unpacking

26-5

From the list, select an input port (packed) data type.

Programmatic Use
Block Parameter: PackDataType

Input port (packed) dimension — Packed data dimension
[1] (default)

Specify the dimensions of the input port (packed). Enter this value as a vector. Specify the size of the
port by using a format compatible with the MATLAB size command.

Programmatic Use
Block Parameter: PackDataSize

Output port (unpacked) data types (cell array) — Unpacked data type
{'uint32'} (default)

The output ports (packed) can be of an arbitrary data type. The number of elements in the cell array
define the number of output ports shown by this block instance. The data types are:

• double
• single
• int8
• uint8
• int16
• uint16
• int32
• uint32
• boolean

Programmatic Use
Block Parameter: UnpackDataTypes

Output port (unpacked) dimension (cell array) — Unpacked data dimension
{[1]} (default)

Specify the dimensions of each output port (unpacked). Enter this value as a cell array of vector sizes.

Programmatic Use
Block Parameter: UnpackDataSizes

Sign extend — Enable sign extension
on (default) | off

Select this check box to enable sign extension. If you select this check box and unpack the data frame
into a signed type (int8, int16, or int32), the block performs sign extension. For example, if the bit
pattern is [0:4], and the data type is int8, you are extracting 5 bits into an 8-bit wide signed type.
In this case, bits 5, 6, and 7 are the same as bit 4, resulting in sign extension. This functionality
enables you to pack and unpack negative numbers without losing precision.

Programmatic Use
Block Parameter: SignExtend

26 Utility Blocks

26-6

Version History
Introduced in R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Bit Packing

Topics
“Configure Input and Output Ports for Bit Packing and Unpacking”

 Bit Unpacking

26-7

Byte Packing
Construct data frames
Library: Simulink Real-Time / Utilities

Description
The Byte Packing block converts one or more signals of user-selectable data types to a single vector
of varying data types. The output of this block typically connects to an input port of a Send block.

The Byte Packing block and the Byte Unpacking block support the slrealtime.tlc code generation
target and generate code that runs on Speedgoat target machines. Due to considerations such as
endianness and addressable word size, these blocks can generate incorrect results for other code
generation targets or target computers.

For example, suppose that you are packing three signals into a vector of uint8. The signals have the
following attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the packed output port data type to uint8.
2 Set the input port data type to a cell array encoding the data types:

{'single', ['uint8'], ['uint8']}

Use square brackets to represent vectors.
3 Set the byte alignment value to 1.
4 Connect the signals to the Byte Packing block.

Input/Output Ports
Input

Port_1 — First of N input ports
scalar | vector

The block has from 1 to N input ports. Specify the number of input ports and their types by entering
them as a cell array in the parameter Input port (unpacked) data types (cell array).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

26 Utility Blocks

26-8

Output

Port_1 — Output port containing packed data
vector

The block displays one output port that transmits a vector of packed data. You determine the data
type of the packed data by setting Output port (packed) data type.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Output port (packed) data type — Data type for the packed output signal
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

From the list, select a data type for the output port.
Programmatic Use
Block Parameter: MaskPackedDataType

Input port (unpacked) data types (cell array) — Data types for the unpacked input
signals
{'uint8'} (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Specify as a cell array the data types of the input ports (unpacked) for the different input signals. The
number of elements in the cell array determines the number of input ports shown by this block
instance. To represent vector elements, use square brackets in the cell array.
Programmatic Use
Block Parameter: MaskUnpackedDataTypes

Byte Alignment — Alignment of the input signal data types after packing
1 (default) | 2 | 4 | 8

Each element in the input signals list starts at a multiple of the alignment value, specified from the
start of the vector. If the alignment value is larger than the size of the data type in bytes, the block
fills the space with pad bytes of value 0.

For example, if the alignment value is 4:

• uint32 receives no padding
• uint16 receives 2 bytes of padding
• uint8 receives 3 bytes of padding

If the model accesses the data items frequently, consider selecting an alignment value equal to the
largest data type that you want to access. If the model transfers data items frequently as a group,
consider an alignment value of 1, which packs the data into as small a space as possible.
Programmatic Use
Block Parameter: MaskAlignment

Version History
Introduced in R2006a

 Byte Packing

26-9

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Byte Unpacking

26 Utility Blocks

26-10

Byte Reversal/Change Endianess
Reverse little-endian data for big-endian processor
Library: Simulink Real-Time / Utilities

Description
You use the Byte Reversal/Change Endianess block for communication between a Simulink Real-Time
system and a system running with a processor that is big-endian. Processors compatible with the
Intel 80x86 family are little-endian. For this situation, insert a Byte Reversal/Change Endianess block
before the Pack block and another just after the Unpack block. The following is the Change Endianess
block.

Parameters
Block Parameters for Change Endianess

Number of input ports — Number of ports
1 (default)

The number of input ports adjusts to follow this parameter and the number of outputs is equal to the
number of inputs.
Programmatic Use
Block Parameter: numInp

Machine word length — Word length for conversion
Byte (default) | Word | Double Word

Select a machine word length from the list to which to convert the data.
Programmatic Use
Block Parameter: />

Byte Reversal Block Parameters

Number of inputs — Number of ports
1 (default)

The number of input ports adjusts to follow this parameter and the number of outputs is equal to the
number of inputs.
Programmatic Use
Block Parameter: numInp

Version History
Introduced in R2006a

 Byte Reversal/Change Endianess

26-11

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also

26 Utility Blocks

26-12

Byte Unpacking
Deconstruct data frames
Library: Simulink Real-Time / Utilities

Description
The Byte Unpacking block converts a vector of varying data types into one or more signals of user-
selectable data types. The input of this block typically connects to an output port of a Receive block.

The Byte Packing block and the Byte Unpacking block support the slrealtime.tlc code generation
target and generate code that runs on Speedgoat target machines. Due to considerations such as
endianness and addressable word size, these blocks can generate incorrect results for other code
generation targets or target computers.

For example, suppose that you are unpacking a uint8 vector signal into three signals. The signals
have these attributes:

Dimension Size Type
Scalar 1 single
Vector 3 uint8
Vector 3 uint8

1 Set the output port data type to:

{'single', ['uint8'], ['uint8']}

Use square brackets to represent vectors.
2 Set the output port dimension to:

{[1],[3],[3]}
3 Set the alignment value to 1.
4 Connect the output signals to the Byte Unpacking block.

Input/Output Ports
Input

Port_1 — Input port containing packed data
vector

The block displays one input port that receives a vector of packed data. The source of the packed
data determines by inheritance the data type of the packed data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

 Byte Unpacking

26-13

Output

Port_1 — First of N output ports
scalar | vector

The block displays from 1 to N output ports, as specified by elements of the cell array in the
parameter Output port (unpacked) data types (cell array).
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Output port (unpacked) data types (cell array) — Data types for the unpacked
output signals
uint8 (default) | double | single | int8 | int16 | uint16 | int32 | uint32 | boolean

Specify as a cell array the data types of the output ports (unpacked) for the different output signals.
The number of elements in the cell array determines the number of output ports shown by this block
instance. To represent vector elements, use square brackets in the cell array.

Programmatic Use
Block Parameter: MaskUnpackedDataTypes

Output port (unpacked) dimensions (cell array) — Dimensions of each output port
(unpacked)
{[1]} (default) | {[N], [M], ...}

Specify the dimensions of the output ports as a cell array of vectors.

Programmatic Use
Block Parameter: MaskUnpackedDataSizes

Byte Alignment — Alignment of the output signal data types before unpacking
1 (default) | 2 | 4 | 8

Each element in the output signals list starts at a multiple of the alignment value, specified from the
start of the input vector. If the alignment value is larger than the size of the data type in bytes, the
vector contains pad bytes of value 0.

For example, if the alignment value is 4:

• uint32 receives no padding
• uint16 receives 2 bytes of padding
• uint8 receives 3 bytes of padding

Programmatic Use
Block Parameter: MaskAlignment

Version History
Introduced in R2006a

26 Utility Blocks

26-14

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Byte Packing

 Byte Unpacking

26-15

Shared Memory Pack
Shared memory pack
Library: Simulink Real-Time / Shared Memory

Description
This block packs the specified partition structure into an unstructured double word array vector. It
converts one or more Simulink signals of varying data types into the vector. Typically, the input to a
pack block is the output from a write block. The Simulink interface is not aware of structures; pass
the output of each structure segment as input to the Shared Memory Pack block.

Memory partitions consist of groups of Simulink signals, which are combined into blocks (packets) of
32-bit words. Before you begin to configure this block, be sure that you have a predefined shared
memory partition structure as required by the shared memory manufacturer.

This block ignores the Address field of the partition structure.

Parameters
Partition struct — Name of structure
[] (default)

Enter the name of the predefined shared memory partition structure.

Programmatic Use
Block Parameter: partition

Version History
Introduced in R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Shared Memory Unpack

26 Utility Blocks

26-16

Shared Memory Unpack
Shared memory unpacking
Library: Simulink Real-Time / Shared Memory

Description
This block unpacks an unstructured double word array vector (from the Shared Memory Pack block)
into the specified partition structure.

Before you begin to configure this block, be sure that you have a predefined shared memory partition
structure as required by the shared memory manufacturer.

This block ignores the Address field of the partition structure.

Parameters
Partition struct — Name of structure
[] (default)

Enter the name of the predefined shared memory partition structure. The block unpacks the double
word array vector into this structure.

Programmatic Use
Block Parameter: partition

Version History
Introduced in R2006a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
Shared Memory Pack

 Shared Memory Unpack

26-17

XCP Universal Measurement and
Calibration Protocol

19

XCP Client Mode

27

XCP Client Mode
The Universal Measurement and Calibration Protocol (XCP) is a network protocol that you can use to
connect calibration systems to electronic control units (ECUs).

A node in the network can run in either client mode or server mode. Simulink Real-Time supports
XCP in client mode to replace (bypass) a subsystem of the ECU controller. The bypass model acquires
input signals from the ECU system, computes the output, and stimulates the result.

To support XCP client mode, the Simulink Real-Time software provides the XCP sublibrary. You can:

• Acquire real-time measurement data by using the XCP CAN Data Acquisition block or XCP UDP
Data Acquisition block.

• Attach incoming data to software interrupts by using the XCP UDP Bypass block.
• Stimulate real-time measurement data by using the XCP CAN Data Stimulation or XCP UDP Data

Stimulation block.

To create an XCP client model:

• Provide an A2L (ASAP2) format file that contains signal, parameter, and XCP-specific network
elements for the server ECU.

• Provide an XCP Configuration block to load the A2L data into the XCP database.
• Provide one XCP CAN Transport Layer for each XCP CAN Configuration block.

Simulink Real-Time supports XCP implemented by using FIFO mode CAN or real-time UDP as
transport protocols.

• Apply stimulus data to the server device by using the XCP Data Stimulation block.
• Acquire measurement data from the server device by using the XCP Data Acquisition block.

If an error occurs during XCP communications, the XCP client attempts to resolve the issue and
continue communications. For example, when a ERR_RESOURCE_TEMPORARY_NOT_ACCESSIBLE
error is detected for the setup command, the XCP client retries the command. If unsuccessful, the
client attempts a restart of XCP communications. The real-time application keeps running while the
XCP client tries to reestablish communications. You can monitor communication status by using the
Output Connection Status port of the XCP UDP Configuration block, the XCP CAN Configuration
block, or the XCP CAN FD Configuration block.

See Also
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer | XCP UDP Data Acquisition | XCP UDP Data Stimulation | XCP UDP Configuration

More About
• “CAN”
• “Real-Time UDP”
• “Third-Party Calibration Support”

27 XCP Client Mode

27-2

Stimulation Support

28

Control and Update Stimulation of Inports to Real-Time
Application

You can stream data to the inports of a real-time application on a target computer by using the
Target.Stimulation object and functions. The functions enables you to control inport stimulation
for individual or all inports and monitor stimulation status.

To load data to the inports, create a time series object by using, for example the timeseries function.
Load the object into the inport. Do not pause or stop the stimulation of inports before or during the
stimulation. A pause or stop generates a stimulation error.

To control or monitor stimulation of inports in a real-time application:

• Start the stimulation of a specific inport or all inports by using the start function.
• Pause the stimulation of a specific inport or all inports by using the pause function.
• Stop the stimulation of a specific inport or all inports by using the stop function.
• Get the status of stimulation of inports by using the getStatus function.
• Load data to specific inports by using the reloadData function.

Stimulate Root Inport by Using MATLAB Language

This example shows how to stimulate root inports in a model by using the Stimulation object and
related functions:

• start
• stop
• getStatus
• reloadData
• pause

Open Model and Map Inport to Wave Data

Open model slrt_ex_osc_inport. Save the model to a working folder. Map the inport to use
square wave data. For inport In1, interpolated is off.

model = ('slrt_ex_osc_inport');
open_system(model);
load(fullfile(matlabroot,'toolbox','slrealtime','examples','slrt_ex_inport_square.mat'));
waveform = square;
set_param(model,'ExternalInput','waveform');
set_param(model,'LoadExternalInput','on');
set_param(model,'StopTime','Inf');

28 Stimulation Support

28-2

Build Model and Download Real-Time Application

Build, download, and execute the real-time application.

evalc('slbuild(model)');
tg = slrealtime('TargetPC1');
load(tg,model);

Stimulate Root Inport Data

Start root inport stimulation of inports 1. Open Scope block and observe results.

start(tg.Stimulation,[1]);
start(tg);

Pause root inport stimulation of inport 1.

pause(tg.Stimulation,[1]);

Stop and start the stimulation of inport 1.

stop(tg.Stimulation,[1]);
start(tg.Stimulation,[1]);

Check the status of stimulation of the inports.

getStatus(tg.Stimulation,'all');

Create a time-series object to load data to an inport.

sampleTime = 0.1;
endTime = 10;
numberOfSamples = endTime * 1/sampleTime + 1;
timeVector = (0:numberOfSamples) * sampleTime;
u = timeseries(timeVector*10,timeVector);

Object u is created for 10 seconds. Load it to the inport 1. Stimulation of an inport should be stopped
before loading data.

 Control and Update Stimulation of Inports to Real-Time Application

28-3

stop(tg.Stimulation,[1]);
reloadData(tg.Stimulation,[1],u);

Stop real-time application and close all.

stop(tg);
bdclose('all');

See Also
timeseries | Target.Stimulation

28 Stimulation Support

28-4

XCP Blocks

29

XCP CAN Transport Layer
Generate and consume XCP messages that are transported by CAN hardware
Library: Simulink Real-Time / XCP / CAN FD

Description
The XCP CAN Transport Layer block handles CAN messages that your model transmits or receives by
using Simulink Real-Time CAN library blocks.

Connect the input side of the block to a block that receives CAN messages. Connect the output side of
the block to a block that transmits the XCP messages over CAN. Set up the transmitting block so that
a CAN message is sent only when an XCP message is available. Otherwise, the block sends 0 byte
data when XCP messages are not available, causing undefined behavior.

Ports
Input

CAN Msg — CAN MESSAGE structures being consumed
vector

Vector of CAN MESSAGE structures being consumed.

N — Number of messages
integer

Number of messages in the vector.

Output

CAN Msg — CAN MESSAGE structures being generated
vector

Vector of CAN MESSAGE structures being generated.

N — Number of messages
integer

Number of messages in the vector.

Version History
Introduced in R2020b

29 XCP Blocks

29-2

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN
Transport Layer

External Websites
www.asam.net

 XCP CAN Transport Layer

29-3

https://www.asam.net

XCP CAN Configuration
Configure XCP server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP server connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP CAN Configuration. Use
one XCP CAN Configuration to configure one server connection for data acquisition or stimulation. If
you add XCP CAN Data Acquisition and XCP CAN Data Stimulation blocks, your model checks to see
if there is a corresponding XCP CAN Configuration block. If there is no corresponding XCP CAN
Configuration block, the model prompts you to add one.

The XCP CAN communication blocks support Simulink accelerator mode and rapid accelerator mode.
You can speed up the execution of Simulink models by using these modes. For more information
about these simulation modes, see “Design Your Model for Effective Acceleration”.

Parameters
Config name — Specify XCP CAN session name
'CAN_Config1' (default)

Specify a unique name for your XCP CAN session.

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP CAN session.

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your server requires a secure key to establish connection. Use the File (*DLL)
parameter to specify the DLL file that contains the seed/key definition.

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security (EnableSecurity), this field is enabled. Click Browse to
select the file that contains the seed and key security algorithm that unlocks an XCP server module.
This parameter is available in Windows Desktop Simulation for Vehicle Network Toolbox.

The File (*.DLL) parameter specifies the name of the DLL-file that contains the seed and key security
algorithm used to unlock an XCP server module. The file defines the algorithm for generating the

29 XCP Blocks

29-4

access key from a given seed according to ASAM standard definitions. For information on the file
format and API, see the Vector web page Steps to Use Seed&Key Option in CANape or "Seed and Key
Algorithm" in National Instruments™ CAN ECU Measurement and Calibration Toolkit User Manual.
Note: The DLL must be the same bitness as MATLAB (64-bit).

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the server module. Selecting this option
adds a new output port.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN Data Acquisition | XCP CAN Data Stimulation | XCP CAN Transport Layer

 XCP CAN Configuration

29-5

https://support.vector.com/kb?id=kb_article_view&sysparm_article=KB0011313
https://www.ni.com/docs/en-US/bundle/371601p/page/download.html
https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN Data Acquisition
Acquire selected measurements from configured server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Data Acquisition block acquires data from the configured server connection based on
measurements that you select. The block uses the XCP CAN transport layer to obtain raw data for the
selected measurements at the specified simulation time step. Configure your XCP connection and use
the XCP CAN Data Acquisition block to select your event and measurements for the configured server
connection. The block displays the selected measurements as output ports.

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information on these simulation modes, see “Design Your Model for Effective Acceleration”.

Ports
Output

Data — Output measurement samples
defined by A2L file

Output measurement samples, with names and types defined by the A2L file. Each entry in the
Selected Measurements parameter defines an output port. A sample is available at every port for
every step of the simulation.

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of the XCP configuration that you want to use. This list displays all available names
specified in the XCP CAN Configuration blocks in the model. Selecting a configuration displays events
and measurements available in the A2L file of this configuration.

Note You can acquire measurements for only one event by using an XCP CAN Data Acquisition block.
Use one block for each event whose measurements you want to acquire.

Event name — Select an event
select from list

29 XCP Blocks

29-6

Select an event from the available list of events. The XCP CAN Configuration block uses the specified
A2L file to populate the events list.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. On your keyboard,
press the Ctrl key to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements list displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. Each selected measurement adds an output port to the
block with the measurement name. To remove a measurement from this list, select the measurement

and click the remove button, .

In the Block Parameters dialog box, use the shift buttons to reorder the selected measurements.

Block Output Settings — Set the port output as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Output Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the raw-to-physical
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

 XCP CAN Data Acquisition

29-7

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

DAQ List Priority — Specify a priority value for server device driver
priority value

Specify a priority value as an integer from 0 to 255 for the server device driver to prioritize
transmission of data packets. The server can accumulate XCP packets for lower priority DAQ lists
before transmission to the client. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from client to server. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Sample time — Specify sampling time of block
-1 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP CAN Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time, which is the default. You can also specify a MATLAB variable for sample time. For more
information, see “What Is Sample Time?”.

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

29 XCP Blocks

29-8

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Stimulation | XCP CAN Transport Layer

 XCP CAN Data Acquisition

29-9

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN Data Stimulation
Perform data stimulation on selected measurements
Library: Vehicle Network Toolbox / XCP Communication / CAN

Simulink Real-Time / XCP / CAN

Description
The XCP CAN Data Stimulation block sends data to the selected server connection for the selected
event measurements. The block uses the XCP CAN transport layer to output raw data for the selected
measurements at the specified stimulation time step. Configure your XCP session and use the XCP
CAN Data Stimulation block to select your event and measurements on the configured server
connection. The block displays the selected measurements as input ports.

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode. You
can speed up the execution of Simulink models by using these modes. For more information about
these simulation modes, see “Design Your Model for Effective Acceleration”.

Ports
Input

Data — Input samples for data stimulation
defined by A2L file

Input data stimulation samples, with names and types defined by the A2L file. Each entry in the
Selected Measurements parameter defines an input port. A sample is written at every port for every
step of the simulation.

Parameters
Config name — Specify XCP CAN session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the available XCP CAN Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration. You can stimulate
measurements for only one event by using an XCP CAN Data Stimulation block. Use one block for
each event whose measurements you want to stimulate.

Event name — Select an event
select from list

Select an event from the event list. The XCP CAN Configuration block uses the specified A2L file to
populate the events list. The block is configured with the corresponding event number from the A2L.

29 XCP Blocks

29-10

The event time cycle does not control transmission of stimulation packets. The block stimulates each
time it executes. For use in Simulink simulation, consider enabling simulation pacing to avoid free-
running stimulation.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements lists displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. Each selected measurement adds an input port to the
block with the measurement name. To remove a measurement from this list, select the measurement

and click the remove button, .

In the Block Parameters dialog box, use the shift buttons to reorder the selected measurements.

Block Input Settings — Set the port input as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Input Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the physical-to-raw
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

 XCP CAN Data Stimulation

29-11

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Version History
Introduced in R2013a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN Configuration | XCP CAN Data Acquisition | XCP CAN Transport Layer

29 XCP Blocks

29-12

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN FD Transport Layer
Generate and consume XCP messages that are transported by CAN FD hardware
Library: Simulink Real-Time / XCP / CAN FD

Description
The XCP CAN FD Transport Layer block handles CAN FD messages that your model transmits or
receives by using Simulink Real-Time CAN FD library blocks.

Connect the input side of the block to a block that receives CAN FD messages. Connect the output
side of the block to a block that transmits the XCP messages over CAN FD. Set up the transmitting
block so that a CAN FD message is sent only when an XCP message is available. Otherwise, the block
sends 0 byte data when XCP messages are not available, causing undefined behavior.

Ports
Input

CAN FD Msg — CAN FD MESSAGE structures being consumed
vector

The block input is a Simulink CAN_FD_MESSAGE_BUS signal. For more information on Simulink bus
objects, see “Composite Interfaces”.

N — Number of messages
integer

Number of messages in the vector.

Output

CAN FD Msg — CAN FD message output
CAN_FD_MESSAGE_BUS

The block output is a Simulink CAN_FD_MESSAGE_BUS signal. For more information on Simulink bus
objects, see “Composite Interfaces”.

N — Number of messages
integer

Number of messages in the vector.

Version History
Introduced in R2022b

 XCP CAN FD Transport Layer

29-13

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
XCP CAN FD Configuration | XCP CAN FD Data Acquisition | XCP CAN FD Data Stimulation

External Websites
www.asam.net

29 XCP Blocks

29-14

https://www.asam.net

XCP CAN FD Configuration
Configure XCP server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN FD

Simulink Real-Time / XCP / CAN FD

Description
The XCP CAN FD Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP server connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP CAN FD Configuration.
Use one XCP CAN FD Configuration to configure one server connection for data acquisition or
stimulation. If you add XCP CAN FD Data Acquisition and XCP CAN FD Data Stimulation blocks, your
model checks to see if there is a corresponding XCP CAN FD Configuration block. If there is no
corresponding XCP CAN FD Configuration block, the model editor prompts you to add one.

The XCP CAN FD communication blocks support Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information about these simulation modes, see “Design Your Model for Effective Acceleration”.

Parameters
Config name — Specify XCP CAN FD session name
'CAN FD_Config1' (default)

Specify a unique name for your XCP CAN FD session.

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP CAN FD session.

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your server requires a secure key to establish connection. Use the File (*DLL)
parameter to specify the DLL file that contains the seed/key definition.

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security (EnableSecurity), this field is enabled. Click Browse to
select the file that contains the seed and key security algorithm that unlocks an XCP server module.
This parameter is available in Windows Desktop Simulation for Vehicle Network Toolbox.

The File (*.DLL) parameter specifies the name of the DLL-file that contains the seed and key security
algorithm used to unlock an XCP server module. The file defines the algorithm for generating the

 XCP CAN FD Configuration

29-15

access key from a given seed according to ASAM standard definitions. For information on the file
format and API, see the Vector web page Steps to Use Seed&Key Option in CANape or "Seed and Key
Algorithm" in National Instruments CAN ECU Measurement and Calibration Toolkit User Manual.
Note: The DLL must be the same bitness as MATLAB (64-bit).

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the server module. Selecting this option
adds a new output port.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN FD Data Acquisition | XCP CAN FD Data Stimulation | XCP CAN FD Transport Layer

29 XCP Blocks

29-16

https://support.vector.com/kb?id=kb_article_view&sysparm_article=KB0011313
https://www.ni.com/pdf/manuals/371601m.pdf
https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN FD Data Acquisition
Acquire selected measurements from configured server connection
Library: Vehicle Network Toolbox / XCP Communication / CAN FD

Simulink Real-Time / XCP / CAN FD

Description
The XCP CAN FD Data Acquisition block acquires data from the configured server connection based
on measurements that you select. The block uses the XCP CAN FD transport layer to obtain raw data
for the selected measurements at the specified simulation time step. Configure your XCP connection
and use the XCP CAN FD Data Acquisition block to select your event and measurements for the
configured server connection. The block displays the selected measurements as output ports.

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information on these simulation modes, see “Design Your Model for Effective Acceleration”.

Ports
Output

Data — Output measurement samples
defined by A2L file

Output measurement samples, with names and types defined by the A2L file. Each entry in the
Selected Measurements parameter defines an output port. A sample is available at every port for
every step of the simulation.

Parameters
Config name — Specify XCP CAN FD session name
select from list

Select the name of the XCP configuration that you want to use. This list displays all available names
specified in the XCP CAN FD Configuration blocks in the model. Selecting a configuration displays
events and measurements available in the A2L file of this configuration.

Note You can acquire measurements for only one event by using an XCP CAN FD Data Acquisition
block. Use one block for each event whose measurements you want to acquire.

Event name — Select an event
select from list

 XCP CAN FD Data Acquisition

29-17

Select an event from the available list of events. The XCP CAN FD Configuration block uses the
specified A2L file to populate the events list.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. On your keyboard,
press the Ctrl key to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements list displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. Each selected measurement adds an output port to the
block with the measurement name. To remove a measurement from this list, select the measurement

and click the remove button, .

In the Block Parameters dialog box, use the shift buttons to reorder the selected measurements.

Block Output Settings — Set the port output as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Output Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the raw-to-physical
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

29 XCP Blocks

29-18

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

DAQ List Priority — Specify a priority value for server device driver
priority value

Specify a priority value as an integer from 0 to 255 for the server device driver to prioritize
transmission of data packets. The server can accumulate XCP packets for lower priority DAQ lists
before transmission to the client. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from client to server. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Sample time — Specify sampling time of block
-1 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP CAN FD Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time, which is the default. You can also specify a MATLAB variable for sample time. For more
information, see “What Is Sample Time?”.

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

 XCP CAN FD Data Acquisition

29-19

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN FD Configuration | XCP CAN FD Data Stimulation | XCP CAN FD Transport Layer

29 XCP Blocks

29-20

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP CAN FD Data Stimulation
Perform data stimulation on selected measurements
Library: Vehicle Network Toolbox / XCP Communication / CAN FD

Simulink Real-Time / XCP / CAN FD

Description
The XCP CAN FD Data Stimulation block sends data to the selected server connection for the
selected event measurements. The block uses the XCP CAN FD transport layer to output raw data for
the selected measurements at the specified stimulation time step. Configure your XCP session and
use the XCP CAN FD Data Stimulation block to select your event and measurements on the
configured server connection. The block displays the selected measurements as input ports.

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode. You
can speed up the execution of Simulink models by using these modes. For more information about
these simulation modes, see “Design Your Model for Effective Acceleration”.

Ports
Input

Data — Input samples for data stimulation
defined by A2L file

Input data stimulation samples, with names and types defined by the A2L file. Each entry in the
Selected Measurements parameter defines an input port. A sample is written at every port for every
step of the simulation.

Parameters
Config name — Specify XCP CAN FD session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the available XCP CAN FD Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration. You can stimulate
measurements for only one event by using an XCP CAN FD Data Stimulation block. Use one block for
each event whose measurements you want to stimulate.

Event name — Select an event
select from list

Select an event from the event list. The XCP CAN FD Configuration block uses the specified A2L file
to populate the events list. The block is configured with the corresponding event number from the
A2L.

 XCP CAN FD Data Stimulation

29-21

The event time cycle does not control transmission of stimulation packets. The block stimulates each
time it executes. For use in Simulink simulation, consider enabling simulation pacing to avoid free-
running stimulation.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

In the block parameters dialog box, type the name of the measurement you want to use in the Search
box. The All Measurements lists displays a list of all matching names. Click the x to clear your
search.

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. Each selected measurement adds an input port to the
block with the measurement name. To remove a measurement from this list, select the measurement

and click the remove button, .

In the Block Parameters dialog box, use the shift buttons to reorder the selected measurements.

Block Input Settings — Set the port input as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Input Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the physical-to-raw
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

29 XCP Blocks

29-22

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Version History
Introduced in R2022b

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP CAN FD Configuration | XCP CAN FD Data Acquisition | XCP CAN FD Transport Layer

 XCP CAN FD Data Stimulation

29-23

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP UDP Configuration
Configure XCP UDP server connection
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Configuration block uses the parameters specified in the A2L file and the ASAP2
database to establish an XCP server connection.

Before you acquire or stimulate data, specify the A2L file to use in your XCP UDP Configuration. Use
one XCP UDP Configuration to configure one server connection for data acquisition or stimulation. If
you add XCP UDP Data Acquisition and XCP UDP Data Stimulation blocks, your model checks to see
if there is a corresponding XCP UDP Configuration block. If there is no corresponding XCP UDP
Configuration block, the model prompts you to add one.

The XCP UDP communication blocks support Simulink accelerator mode and rapid accelerator mode.
You can speed up the execution of Simulink models by using these modes. For more information
about these simulation modes, see “Design Your Model for Effective Acceleration”.

Parameters
Config name — Specify XCP UDP session name
'UDP_Config1' (default)

Specify a unique name for your XCP session.

A2L File — Select an A2L file
file name

Click Browse to select an A2L file for your XCP session.

Enable seed/key security — Select that key required to establish connection
'off'

Select this option if your server requires a secure key to establish connection. Select a file that
contains the seed/key definition to enable security.

File (*.DLL) — Select file for seed and key security
file name

If you select Enable seed/key security, this field is enabled. Click Browse to select the file that
contains the seed and key security algorithm that unlocks an XCP server module. This parameter is
available in Windows Desktop Simulation for Vehicle Network Toolbox.

29 XCP Blocks

29-24

Output connection status — Display connection status
'off'

Select this option to display the status of the connection to the server module. Selecting this option
adds a new output port.

Disable CTR error detection — Disable CTR error detection scheme
'on' (default) | 'off'

To detect missing packets, the block can check the counter value in each XCP packet header. When
'on', counter error detection for packet headers is disabled. When 'off', the counter Error
detection scheme is enabled.

Error detection scheme — Select CTR error detection scheme
One counter for all CTOs and DTOs (default) | Separate counters for
(RES,ERR,EV,SERV) and (DAQ) | Separate counters for (RES,ERR), (EV,SERV) and
(DAQ)

To detect missing packets, the block can check the counter value in each XCP packet header and
apply an error-detection scheme.

Sample time — Sample time of block
-1 (default) | numeric

Enter the base sample time or a multiple of the base sample time. -1 means that sample time is
inherited. For information about simulation sample timing, see “What Is Sample Time?”.

Local IP Address — Maser IP address
x.x.x.x

Enter the IP address to which you want to connect.

Local Port — Client IP port
1–65535

The combination of Local IP address and Local port must be unique.

Ports in the range 5500 through 5560 are reserved for Simulink Real-Time communications.

Version History
Introduced in R2019a

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

 XCP UDP Configuration

29-25

https://www.mathworks.com/support/requirements/supported-compilers.html

See Also
Blocks
XCP UDP Data Acquisition | XCP UDP Data Stimulation | XCP UDP Bypass

29 XCP Blocks

29-26

XCP UDP Data Acquisition
Acquire selected measurements from configured server connection
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Data Acquisition block acquires data from the configured server connection based on
the measurements that you select. The block uses the XCP UDP transport layer to obtain raw data for
the selected measurements at the specified simulation time step. Configure your XCP connection and
use the XCP UDP Data Acquisition block to select your event and measurements for the configured
server connection. The block displays the selected measurements as output ports.

The XCP communication blocks support the use of Simulink accelerator mode and rapid accelerator
mode. You can speed up the execution of Simulink models by using these modes. For more
information on these simulation modes, see “Design Your Model for Effective Acceleration”.

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the XCP UDP Configuration blocks in the model. Selecting a configuration displays events
and measurements available in the A2L file of this configuration. You can acquire measurements for
only one event by using an XCP UDP Data Acquisition block. Use one block for each event whose
measurements you want to acquire.

Event name — Select an event
select from list

Select an event from the available list of events. The XCP UDP Configuration block uses the specified
A2L file to populate the events list.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to add it to the selected measurements. Hold the Ctrl key
on your keyboard to select multiple measurements.

In the Block Parameters dialog box, type the name of the measurement you want to use in the
Search box. The All Measurements lists displays a list of all matching names. Click the x to clear
your search.

 XCP UDP Data Acquisition

29-27

Selected Measurements — List selected measurements
measurement names

This list displays selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.

Block Output Settings — Set the port output as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Output Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the raw-to-physical
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG
• SLONG
• A_UINT64
• A_INT64

29 XCP Blocks

29-28

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

DAQ List Priority — Specify a priority value for server device driver
priority value

Specify a priority value as an integer from 0 to 255 for the server device driver to prioritize
transmission of data packets. The server can accumulate XCP packets for lower priority DAQ lists
before transmission to the client. A value of 255 has the highest priority. The SET_DAQ_LIST_MODE
command communicates the DAQ List Priority value from client to server. This communication
method differs from the specification of the Event Channel Priority property, which comes from the
A2L file.

Sample time — Specify sampling time of block
-1 (default)

Specify the sampling time of the block during simulation, which is the simulation time. This value
defines the frequency at which the XCP UDP Data Acquisition block runs during simulation. If the
block is inside a triggered subsystem or is to inherit sample time, you can specify –1 as your sample
time, which is the default. You can also specify a MATLAB variable for sample time. For information
about simulation sample timing, see “What Is Sample Time?”.

Enable Timestamp — Enable reading timestamp from incoming DTO packets
off (default) | on

When the Timestamp is enabled, the block reads the timestamp from incoming DTO packets and
outputs the timestamp to Simulink. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Version History
Introduced in R2019a

Compu Method Conversion Support

To add Compu method conversion support, the Force Datatypes and Allow Non-Scalar parameter
for the XCP CAN Data Acquisition block, XCP CAN Data Stimulation block, XCP UDP Data Acquisition
block, and XCP UDP Data Stimulation block has been replaced with the Block Input/ Output
Settings parameter. Using this parameter, you can select whether to apply Compu method
conversion to block input or output.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

 XCP UDP Data Acquisition

29-29

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Stimulation | XCP UDP Bypass

29 XCP Blocks

29-30

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP UDP Data Stimulation
Perform data stimulation on selected measurements
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Data Stimulation block sends data to the selected server connection for the event
measurements that you select. The block uses the XCP UDP transport layer to output raw data for the
selected measurements at the specified stimulation time step. Configure your XCP session and use
the XCP UDP Data Stimulation block to select your event and measurements on the configured server
connection. The block displays the selected measurements as input ports.

The XCP communication blocks support Simulink accelerator mode and rapid accelerator mode. You
can speed up the execution of Simulink models by using these modes. For more information about
these simulation modes, see “Design Your Model for Effective Acceleration”.

Parameters
Config name — Specify XCP UDP session name
select from list

Select the name of XCP configuration that you want to use. This list displays all available names
specified in the available XCP UDP Configuration blocks in the model. Selecting a configuration
displays events and measurements available in the A2L file of this configuration. You can stimulate
measurements for only one event by using an XCP UDP Data Stimulation block. Use one block for
each event whose measurements you want to stimulate.

Event name — Select an event
select from list

Select an event from the event list. The XCP UDP Configuration block uses the specified A2L file to
populate the events list. The block is configured with the corresponding event number from the A2L.

The event time cycle does not control transmission of stimulation packets. The block stimulates each
time it executes. For use in Simulink simulation, consider enabling simulation pacing to avoid free-
running stimulation.

All Measurements — List all measurements available for event
measurements list

This list displays all measurements available for the selected event. Select the measurement that you

want to use and click the add button, to move it to the selected measurements. Hold the Ctrl
key on your keyboard to select multiple measurements.

 XCP UDP Data Stimulation

29-31

In the block parameters dialog box, type the name of the measurement you want to use. The All
Measurements lists displays a list of all matching names. Click the x to clear your search.

Selected Measurements — List selected measurements
measurement names

This list displays your selected measurements. To remove a measurement from this list, select the

measurement and click the remove button, .

In the Block Parameters dialog box, use the toggle buttons to reorder the selected
measurements.

Block Input Settings — Set the port input as Compu method conversion values or raw
values
Raw values as double (no Compu method conversion) (default) | Raw values (no Compu
method conversion) | Physical values (apply Compu method conversion)

This parameter enables support for XCP data types and dimensions as defined in the ASAP2 standard.
The Block Input Settings parameter selects whether the port outputs Compu method conversion
values or raw values. The options provide:

• Physical values (apply Compu method conversion) enables the physical-to-raw
conversion of ECU measurement values. For this option, the block port settings are set either to
'double' or 'string', based on the underlying Compu method conversion. For example,
Compu method IDENTICAL, LINEAR, RAT_FUNC, TAB_INTP, and TAB_NOINTP port settings is
'double' while Compu method TAB_VERB port settings is 'string'. The maximum string
length supported for Compu method conversion is 1024 as specified in the ASAM XIL
specification.

The FORM Compu method conversion is not supported. Simulink throws a warning for such a
conversion and IDENTICAL conversion is applied to the underlying measurement. Also, only
scalar measurement signals are supported for TAB_VERB conversion as Simulink only supports
scalar strings.

Selecting this option shows the physical units (if any) in front of the measurement name on the
block mask. This physical unit is acquired from the A2L description of the measurement and
Compu method. If the physical unit is not specified, only the measurement name is displayed.

• Raw values (no Compu method conversion) sets the port data type according to the type
definition in the A2L file and supports up to three-dimensional XCP measurements in Simulink.

• Raw values as double (no Compu method conversion) sets the port data type as
double, converting all internal measurement values. This selection supports up to three-
dimensional XCP measurements in Simulink.

These ASAP2 data types are supported by corresponding Simulink port data types:

• SBYTE
• UWORD
• SWORD
• ULONG

29 XCP Blocks

29-32

https://www.asam.net/standards/detail/xil/
https://www.asam.net/standards/detail/xil/

• SLONG
• A_UINT64
• A_INT64
• FLOAT32_IEEE
• FLOAT64_IEEE

The dimension support in the block accommodates the different treatment of matrices by MATLAB
and the ECU. The MATLAB default operation treats matrices as row-major matrices. An XCP
measurement can have a LAYOUT as COLUMN_DIR or ROW_DIR . If a matrix measurement is
COLUMN_DIR, the blocks rearrange the measurement in memory and ensure that the matrix (row X,
col Y) in MATLAB refers to the same entry as (row X, col Y) on the ECU. The rearrangement causes
matrix entries that are contiguous on the ECU to be noncontiguous in MATLAB and Simulink.

Enable Timestamp — Enable sending Simulink timestamp in STIM DTO packets
off (default) | on

When the Timestamp is enabled, the block inputs a timestamp from Simulink and sends the
timestamp in the STIM DTO packets. The Enable Timestamp check box appears in the block
parameters dialog box when the parameter is supported in the A2L file.

Version History
Introduced in R2019a

Compu Method Conversion Support

To add Compu method conversion support, the Force Datatypes and Allow Non-Scalar parameter
for the XCP CAN Data Acquisition block, XCP CAN Data Stimulation block, XCP UDP Data Acquisition
block, and XCP UDP Data Stimulation block has been replaced with the Block Input/ Output
Settings parameter. Using this parameter, you can select whether to apply Compu method
conversion to block input or output.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
Blocks
XCP UDP Configuration | XCP UDP Data Acquisition | XCP UDP Bypass

 XCP UDP Data Stimulation

29-33

https://www.mathworks.com/support/requirements/supported-compilers.html

XCP UDP Bypass
Connect the function-call outport to a function-call subsystem
Library: Vehicle Network Toolbox / XCP Communication / UDP

Simulink Real-Time / XCP / UDP

Description
The XCP UDP Bypass block connects the function-call outport to a function-call subsystem containing
one data acquisition list. The block issues a function-call when the downstream data acquisition list
has new data available.

Consider the downstream function-call subsystem as a bypass task:

In Simulink Real-Time, the bypass task is executed asynchronously with the assigned task priority.

In Simulink, the block checks for data acquisition data periodically at the assigned sample rate and
executes the bypass task accordingly.

Ports
Output

Function-call — Function call for bypass
function call

Connects the function-call outport to a function-call subsystem containing one data acquistion list.

Parameters
Task Priority — Task priority in QNX Neutrino scheduler
191 (default) | integer

Select the task priority for the QNX Neutrino scheduler.

Sample Time — Sample time
-1 (default) | double

Select the sample time. For more information, see “Sample Times in Subsystems”.

Version History
Introduced in R2020b

29 XCP Blocks

29-34

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

The XCP communication blocks support code generation with limited deployment portability that runs
only on the host computer or Simulink Real-Time targets.

Code generation requires a C++ compiler that is compatible with the code generation target. For
more information, see Supported and Compatible Compilers.

See Also
XCP UDP Data Acquisition | XCP UDP Data Stimulation | XCP UDP Configuration

 XCP UDP Bypass

29-35

https://www.mathworks.com/support/requirements/supported-compilers.html

Speedgoat Blocks Library

37

Speedgoat Support

30

Speedgoat Target Computers and Speedgoat Support
Speedgoat target computers are real-time computers fitted with a set of I/O hardware, Simulink
programmable and configurable FPGAs, and communication protocol support. Speedgoat target
computers are optimized for use with Simulink Real-Time and fully support the HDL Coder™
workflow.

Speedgoat real-time target machines include:

• Performance — Highest performance, cost-effective real-time system for office or lab. Supports up
to 50 I/O modules.

• Mobile — Compact, rugged, fanless, and expandable real-time system. For mobile and in-vehicle
use and use in confined areas. Provides an extended operating temperature range. Supports up to
14 I/O modules.

• Baseline — Small, rugged, and fanless real-time system. For mobile, in-vehicle, and classroom use
and use in confined areas. Provides an extended operating temperature range. Supports up to 7
I/O modules

• Audio — Real-time system optimized for audio applications, such as hearing aids and car
acoustics.

• Unit — Small, rugged real-time system for mobile, field, in-vehicle and classroom use and use in
confined areas. Provides an extended operating temperature range. Supports 1 I/O module

When you install the Speedgoat I/O Blockset, the installer sets up help for the blocks in the MATLAB
Help browser. To view the Speedgoat I/O Blockset documentation, open the Help browser and
navigate to the home page. At the bottom right of the home page, under Supplemental Software,
click Speedgoat I/O Blockset.

To install your Speedgoat I/O Blockset, go to www.speedgoat.com/extranet, the Speedgoat Customer
Portal. Follow the instructions to download and install the Speedgoat I/O Blockset.

You can find Speedgoat real-time target machine configuration documentation online at
www.speedgoat.com/help.

You can find Speedgoat real-time target machine product information online at www.speedgoat.com/
products-services.

Speedgoat I/O Hardware
Speedgoat provides a wide range of I/O hardware with ready-to-use configurations for rapid control
prototyping (RCP) and hardware-in-the-loop (HIL) simulations. Speedgoat I/O connectivity includes
support for:

• Analog I/O: single-ended or differential inputs or outputs, with or without isolation, 16–24 bit,
voltage and current controlled

• Digital I/O: LVCMOS, TTL, RS-422, RS-485, LVDS
• FPGA code modules for:

• Interrupts
• PWM generation and capture, pulse patterns
• Quadrature decoding and encoding (measurement and simulation)

30 Speedgoat Support

30-2

https://www.speedgoat.com/extranet
https://www.speedgoat.com/help
https://www.speedgoat.com/products-services
https://www.speedgoat.com/products-services

• SSI master, slave, and sniffer (measurement and simulation)
• SSI2 master, slave, and sniffer (measurement and simulation)
• EnDat 2.2 decoder, encoder, and sniffer (measurement and simulation)
• BiSS decoder, encoder, and sniffer (measurement and simulation)
• SPI master, slave, and sniffer
• I²C master and slave
• Cam and crank decoder and simulator (measurement and simulation)
• UART (RS-485/RS-422)
• Aurora 64B/66B master and slave
• And more

• LVDT/RVDT and synchro/resolver (measurement and simulation)
• Serial:

• RS-232, RS-422, RS-485
• SDLC, HDLC

• Shared memory
• Thermocouple, RTD, and strain gauge (measurement and simulation)
• Vibration measurements (IEPE/ICP transducers)
• Programmable resistors and potentiometers
• SPDT, SPST, and DPST reed relays
• Fault insertion
• Battery management systems

Speedgoat Communication Protocols
Speedgoat provides communication protocol support for I/O hardware with ready-to-use
configurations. Speedgoat communication protocols include:

• CAN, CAN FD, LIN, SAE J1939, and FlexRay™
• XCP over Ethernet, XCP over CAN
• MIL-STD-1553, ARINC-429, ARINC-629, AFDX (ARINC 664 Pt7)
• EtherCAT master and EtherCAT slave
• Real-time UDP, Real-time raw Ethernet, TCP/IP
• EtherNet/IP™ Scanner (master) and EtherNet/IP Adapter (slave)
• PROFINET master and PROFINET slave
• PROFIBUS master and PROFIBUS slave
• Modbus TCP Client (master), Modbus TCP Server (slave), Modbus RTU
• POWERLINK Controlled Node (slave)
• Timing and synchronization: PTP (Precision Time Protocol, IEEE 1588), GPS, IRIG
• UART (RS-232, RS-422, RS-485)
• I2C, SPI, SSI, SSI2, EnDAT 2.2, BiSS

 Speedgoat Target Computers and Speedgoat Support

30-3

• Camera Link®

• Aurora 8B/10B and 64B/66B multigigabit links for FPGA

See Also

More About
• “Set Up and Configure Simulink Real-Time”

External Websites
• www.speedgoat.com/help
• www.speedgoat.com/products-services
• www.speedgoat.com

30 Speedgoat Support

30-4

https://www.speedgoat.com/help
https://www.speedgoat.com/products-services
https://www.speedgoat.com

	Simulink Real-Time I/O Library
	I/O Driver Blocks
	Speedgoat I/O Modules
	Speedgoat I/O Blockset
	Simulink Real-Time Block Library

	Add I/O Blocks to Simulink Model
	Configure Block Parameters

	Async Block Library
	Periodic and Nonperiodic Events
	About RTOS Tasks and Priorities

	Asynchronous Event: Blocks
	Thread Trigger

	DDS
	DDS Blocks
	DDS Receive
	DDS Send

	CAN Message Blocks Library
	CAN Utility Blocks
	CAN Pack
	CAN Unpack
	CAN FD Pack
	CAN FD Unpack

	EtherCAT Blocks Library
	Model-Based EtherCAT Communications Support
	Modeling EtherCAT Networks
	Blocks and Tasks
	Order of Network Events

	Install EtherCAT Network Tools TwinCAT or EC-Engineer
	Hardware Setup Requirements for TwinCAT 3
	Configure EtherCAT Network by Using TwinCAT 3
	Scan EtherCAT Network
	Configure EtherCAT Master Node Data
	Export and Save EtherCAT Configuration by Using TwinCAT 3

	Install EtherCAT Network for Execution
	Configure EtherCAT Master Node Model
	Configure EtherCAT Init Block
	Configure EtherCAT PDO Receive Blocks
	Configure EtherCAT PDO Transmit Blocks
	Update Async SDO Block Variables by Using Complete Access Mode
	Configure EtherCAT Model Configuration Parameters

	EtherCAT Distributed Clock Algorithm
	Master Shift Mode
	Bus Shift Mode
	Limitations

	Fixed-Step Size Derivation
	EtherCAT Protocol Mapping
	EtherCAT Configurator Component Mapping
	EtherCAT Data Types
	EtherCAT Init Block DC Error Values
	EtherCAT Error Codes

	EtherCAT Blocks
	EtherCAT Init
	EtherCAT Get Notifications
	EtherCAT Get Scanbus Error Data
	EtherCAT PDO Receive
	EtherCAT PDO Transmit
	EtherCAT Get State
	EtherCAT Set State
	EtherCAT Get Device State
	EtherCAT Set Device State
	EtherCAT Sync SDO Upload
	EtherCAT Sync SDO Download
	EtherCAT Async SDO Upload
	EtherCAT Async SDO Download
	EtherCAT Sync SSC/SoE Upload
	EtherCAT Sync SSC/SoE Download
	EtherCAT Async SSC/SoE Upload
	EtherCAT Async SSC/SoE Download

	IP Internet Protocol Blocks Library
	Real-Time TCP Communication Support
	TCP Transport Protocol

	TCP Blocks
	TCP Client
	TCP Receive
	TCP Send
	TCP Server

	Real-Time UDP Communication Support
	UDP Transport Protocol
	UDP Data Exchange by Using Shared Ethernet Board
	UDP Data Transfer
	Set Up slrt_ex_udpsendreceiveA
	Set Up slrt_ex_udpsendreceiveB

	UDP Communication Setup
	UDP and Variable-Size Signals

	Real-Time UDP Blocks
	UDP Multicast Receive
	UDP Receive
	UDP Send

	Model-Based Ethernet Communications Support
	Apply 802.1Q VLAN Tag by Using Ethernet Send and Receive Blocks

	Ethernet Blocks
	Ethernet Receive
	Ethernet Send

	SAE J1939 Blocks Library
	SAE J1939
	SAE J1939 Blocks

	SAE J1939 Blocks
	J1939 Network Configuration
	J1939 Node Configuration
	J1939 CAN Transport Layer
	J1939 Receive
	J1939 Transmit

	Logitech
	Logitech Blocks
	Logitech G29 Steering Wheel

	LIN
	LIN Blocks
	LIN Pack
	LIN Unpack

	Logging Blocks Library
	Logging Blocks
	File Log
	Enable File Log

	Profiling Blocks Library
	Profiling Blocks
	Enable Profiler
	Log Event

	PTP Precision Time Protocol Blocks Library
	PTP Blocks
	Precision Time Protocol
	Precision Time Protocol
	PTP Prerequisites

	Precision Time Protocol Blocks
	IEEE 1588 Read Parameter

	RS232 Serial Blocks Library
	Serial Communications Support
	RS-232 Serial Communication
	Serial Connections for RS-232

	RS-232 Legacy Drivers
	Add RS-232 Blocks
	Building and Running the Real-Time Application
	Simulink Real-Time RS-232 Reference

	Serial Communications Support: Blocks
	ASCII Encode
	ASCII Decode
	ASCII Decode V2
	FIFO Read
	FIFO Write
	FIFO Read HDRS
	FIFO Read Binary
	Modem Control
	Modem Status
	Legacy Serial Read
	Legacy Serial Setup
	Legacy Serial Write
	Legacy Serial Port
	Legacy Serial Port F

	Target Management
	Target Management Blocks
	SLRT Overload Options
	Persistent Variable Read
	Persistent Variable Write

	Utilities
	Utility Blocks
	Bit Packing
	Bit Unpacking
	Byte Packing
	Byte Reversal/Change Endianess
	Byte Unpacking
	Shared Memory Pack
	Shared Memory Unpack

	XCP Universal Measurement and Calibration Protocol
	XCP Client Mode
	XCP Client Mode

	Stimulation Support
	Control and Update Stimulation of Inports to Real-Time Application
	Stimulate Root Inport by Using MATLAB Language

	XCP Blocks
	XCP CAN Transport Layer
	XCP CAN Configuration
	XCP CAN Data Acquisition
	XCP CAN Data Stimulation
	XCP CAN FD Transport Layer
	XCP CAN FD Configuration
	XCP CAN FD Data Acquisition
	XCP CAN FD Data Stimulation
	XCP UDP Configuration
	XCP UDP Data Acquisition
	XCP UDP Data Stimulation
	XCP UDP Bypass

	Speedgoat Blocks Library
	Speedgoat Support
	Speedgoat Target Computers and Speedgoat Support
	Speedgoat I/O Hardware
	Speedgoat Communication Protocols

